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1 Kreiss matrix theorem
For nonnormal matrix A, the behavior of ∥exp(A)t∥ can be quite complicated. Some commonly known results are:∥∥etA∥∥ ≤ eω(A)t, ω(A) := sup(σ(Re(A)), (1)∥∥etA∥∥ ≥ eα(A)t, α(A) := lim

t→∞
t−1 log

∥∥etA∥∥. (2)

The transient effect is a very interesting numerical phenomenon. We consider the resolvent operator (zI −A)−1 (z ∈ C).
If
∥∥(zI −A)−1

∥∥ is very large (105) for some z with Re z = 10−2, then there must be a “transient growth” of magnitude at
least 103. This leads to one half of the Kreiss matrix theorem. We define the Kreiss constant of A (w.r.t. the left half plane) as

K(A) = sup
Re z>0

(Re z)
∥∥(zI −A)−1

∥∥. (3)

Then we have a sharper lower bound
sup
t≥0

∥∥etA∥∥ ≥ K(A). (4)

This result is known as the Kreiss matrix theorem.

Theorem 1. For A ∈ MN (C), then we have

K(A) ≤ sup
t≥0

∥∥etA∥∥ ≤ eNK(A). (5)

We can also consider the Kreiss constant w.r.t. the unit disk

K◦(A) = sup
|z|>1

(|z| − 1)
∥∥(zI −A)−1

∥∥. (6)

and yield the following Kreiss matrix theorem for K◦:

Theorem 2. For A ∈ MN (C), then we have

K◦(A) ≤ sup
k≥0

∥∥Ak
∥∥ ≤ eNK◦(A). (7)

We first prove Theorem 2.

Proof of Theorem 2. We first consider the left-hand inequality. Without lost of generality, we assume that A is power-bounded
i.e.

∥∥Ak
∥∥ ≤ C for some C and all k. We take the norm of the power series expansion

∥∥(zI −A)−1
∥∥ =

∥∥z−1I + z−2A+ z−3A2 + · · ·
∥∥ ≤

supk≥0

∥∥Ak
∥∥

|z| − 1
. (8)

Note that |z| > 1 and A is power-bounded, therefore the spectrum of A necessarily lies in the closed unit disk D and the series
is guaranteed to converge. Therefore the left-hand inequality follows readily.

We now turn to the right hand part, note that

Ak =
1

2πi

∫
G

zk(zI −A)−1dz. (9)
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Here, G is a closed contour enclosing the spectrum of A which itself lies in D if K◦(A) < ∞. Let u, v be arbitrary unit
vectors, then

v∗Aku =
1

2πi

∫
G

zkR(z)dz, R(z) = v∗(zI −A)−1u. (10)

By integration by parts, we have

v∗Aku = − 1

2π(k + 1)i

∫
G

zk+1R′(z)dz. (11)

We let G = {|z| = 1+ 1
k+1}, then by the Spijker’s lemma (The image, on the Riemann sphere, of any circle under a complex

rational mapping, with numerator and denominator having degrees no more than n, has length no longer than 2nπ), we have∣∣v∗Aku
∣∣ ≤ e

2π(k + 1)

∫
G

|R′(z)|dz ≤ e

2π(k + 1)
2πN∥R∥∞. (12)

By definition, we have

∥R∥∞ = (k + 1) sup
G

1

k + 1

∣∣v∗(zI −A)−1u
∣∣ ≤ sup

|z|>1

(|z| − 1)
∥∥(zI −A)−1

∥∥ = K◦(A). (13)

Therefore, ∥∥Ak
∥∥ ≤ eNK◦(A). (14)

The proof of Theorem 1 is essentially same as that of Theorem 2. In fact we have

Proof of Theorem 1. The left-hand inequality is trivial. For the right-hand inequality, we have

etA =
1

2πi

∫
G

ezt(zI −A)−1dz. (15)

Again, we define the (weak) resolvent function R(z) = v∗(zI −A)−1u, then we have

v∗etAu =
1

2πi

∫
G

eztR(z)dz =
1

2πti

∫
G

eztR′(z)dz. (16)

We let G = iR+ 1/t, then again by the Spijker’s lemma∣∣v∗etAu∣∣ ≤ e

2πt

∫
G

|R′(z)|dz ≤ e

2πt
2πN∥R∥∞ = eN sup

z∈G

1

t

∣∣v∗(zI −A)−1u
∣∣ ≤ eN sup

Re z>0
Re z

∥∥(zI −A)−1
∥∥ = eNK(A).

(17)

2 Restricted Kreiss constants
In fact, K(A) and K◦(A) can be strongly affected by some “defective” eigenvalues, such as pure imaginary eigenvalue for the
former or unit imaginary eigenvalue for the latter. In these cases, the Kreiss constants can be infinite. In fact, this can be in
some sense characterized by “restricted Kreiss constants”.

Theorem 3. We define

Kδ(A) = δ sup
z∈iR+δ

∥∥(zI −A)−1
∥∥, K◦

δ(A) = δ sup
|z|=1+δ

∥∥(zI −A)−1
∥∥. (18)

Then, assume A has the Jordan decomposition A = SJS−1 with S invertible, d = maxl dl is the size of the largest Jordan
block, we have

1. If Re(λ) /∈ (0, 2δ) for any λ ∈ σ(A) and δ ∈ (0, 1), then

Kδ(A) ≤ κ(S)

(
1

δ

)d−1
1− δd

1− δ
. (19)
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2. If |λl| /∈ (1, 1 + 2δ) for any λ ∈ σ(A) and δ ∈ (0, 1), then

K◦
δ(A) ≤ κ(S)

(
1

δ

)d−1
1− δd

1− δ
. (20)

Proof. We claim, in both case (z ∈ iR+ δ or ∈ {|z| = 1 + δ},

∥∥(zI −A)−1
∥∥ ≤ κ(S)

δd
· 1− δd

1− δ
. (21)

Then the results follows readily by definition. In fact,∥∥(zI −A)−1
∥∥ ≤ ∥S∥

∥∥S−1
∥∥∥∥(zI − J)−1

∥∥ = ∥S∥
∥∥S−1

∥∥∥∥diag(zI − Jl)
−1

∥∥ = ∥S∥
∥∥S−1

∥∥max
l

∥∥(zI − Jl)
−1

∥∥. (22)

Without loss of generalization, we assume that λl is the maximizer. Then we denote

Nl =


0 1 · · · 0
...

. . . . . .
...

0 · · · 0 1
0 · · · 0 0


d×d

, ∥Nl∥ = 1. (23)

Then ∥∥(zI − Jl)
−1

∥∥ =
∥∥[(z − λl)I −Nl]

−1
∥∥ ≤ |z − λl|−1 1− |z − λl|−d∥Nl∥d

1− |z − λl|−1∥Nl∥
=

1− δ−d

δ(1− δ−1)
. (24)

From which, we conclude our claim and thus prove the required results.
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