

MATH 206 Notes

Haoen Li

Latest revision: December 19, 2025

Contents

1	Hahn-Banach Theorem	1
2	“Great” Theorems in Functional Analysis	4
3	Fredholm Theory	5
4	Duality	9
5	Spectral Theorem for Self-Adjoint Operators	11

1 Hahn-Banach Theorem

Theorem 1.1 (Geometric Hahn-Banach for convex sets). *V vector space over $\mathbb{K} = \mathbb{R}$. Suppose A is convex and linearly open. W (affined) subspace of V , with $A \cap W = \emptyset$, then $\exists a(n)$ (affined) hyperplane H containing W and disjoint from A .*

Remark 1.

- We say $A \subset V$ is convex, if $\{t \in \mathbb{R} : x + ty \in A\}$ is an interval in \mathbb{R} for any $x, y \in V$, or equivalently, for any $x, y \in A$ and $0 < \lambda < 1$, we have $\lambda x + (1 - \lambda)y \in A$.
- We say that $A \subset V$ is linearly open, if it is convex and for any $x, y \in A$, $\{t : x + ty \in A\}$ is an open interval in \mathbb{R} .

Theorem 1.2 (Hahn-Banach Theorem for topological vector spaces). *V topological vector space over $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Suppose $A \subset V$ is convex and open, and W is a(n) (affined) subspace with $A \cap W = \emptyset$, then $\exists a(n)$ (affined) **closed** hyperplane H containing W and disjoint from A .*

Proof. (Sketch) A open implies A linearly open. Applying Theorem 1.1 there exists a hyperplane H containing W and disjoint from A . Since $V \setminus A$ is closed, we have $\overline{H} \subset V \setminus A$. $\text{codim} \overline{H} \leq 1$ and \overline{H} is not V , thus \overline{H} is also a hyperplane. For $\mathbb{K} = \mathbb{C}$, we first view V as over \mathbb{R} and find H_1 closed and $\text{codim}_{\mathbb{R}} H_1 = 1$. Then consider $H = H_1 \cap (iH_1)$. Then H is closed, a \mathbb{C} -subspace, and has codimension 2 over \mathbb{R} thus codimension 1 over \mathbb{C} .

□

Theorem 1.3 (Hahn-Banach for LCTVS, closed version). *V a locally convex topological vector space, B closed convex. $x \notin B$. Then there exists a continuous linear functional $f : V \rightarrow \mathbb{K}$ such that $\{f(x) = f(y)\} \cap B = \emptyset$. Or analytically,*

$$\inf_{y \in B} |f(x) - f(y)| > 0. \quad (1)$$

Proof. The strategy is recasting it to the open version. Find a balanced nbhd N of 0 such that $(x+N) \cap B = \emptyset$ and $x \notin A := B + N$. By the open version there exists closed H containing x and disjoint from A . This means $f(x + z_1) \neq f(y + z_2)$ for any $y \in B, z_1, z_2 \in N$, thus $f(N) \neq \{0\}$ but $f(N)$ is balanced around 0 in \mathbb{K} thus $\inf_{y \in B} |f(x) - f(y)| > 0$. \square

Corollary 1. *Same setting as above. Suppose $W \subset V$ a subspace, then \overline{W} can be characterized as*

$$W = \bigcap_{\substack{f \text{ continuous linear functional} \\ f|_W = 0}} \ker f = \bigcap_{\substack{H \text{ closed hyperplane} \\ H \supset W}} H. \quad (2)$$

Proof. If $x \in \overline{W}$, $\ker f \supset W$ and by closedness we know that $\ker f \supset \overline{W}$ and we know that x in the intersection. Conversely, if $x \notin \overline{W}$, we want to find f continuous such that $f|_W = 0$ but $f(x) \neq 0$. This can be done by finding f such that $f(x) \neq f(y)$ for any $y \in \overline{W}$ (\overline{W} closed and convex and away from x). If $f(y) \neq 0$, then $f(x) \neq f(f(x)/f(y) \cdot y) = f(x)$, which is a contradiction. \square

Example 1 (Runge's approximation). *Let $K \subset \mathbb{C}$ compact, suppose $\mathbb{C} \setminus K$ is connected. Then any function holomorphic in a neighborhood of K can be approximated uniformly on K by polynomials.*

Proof. We recall the Riesz representation of $C(K)^*$: for any linear functional L on $C(K)$ we can write it as

$$L(f) = \int_K f(z) d\mu(z) \quad (3)$$

with some complex finite Borel measure μ supported on K . Now using the characterization of the closure of subspace, the closure of \overline{W} with W the space of polynomials in $C(K)$ is

$$\overline{W} = \bigcap_{\substack{L \in C(K)^* \\ L|_W = 0}} \ker L. \quad (4)$$

Thus to show that any holomorphic f on $\text{nbhd}(K)$ is in \overline{W} , we only need to show that for any μ with

$$\int_K z^n d\mu(z) = 0, \forall n \geq 0, \quad (5)$$

we have

$$\int_K f(z) d\mu(z) = 0. \quad (6)$$

This is done by the integral formula

$$\int_K f(z) d\mu(z) = -\frac{1}{2\pi i} \int \int \int \frac{1}{\zeta - z} \bar{\partial} \varphi(\zeta) f(\zeta) d\mu(z) d\bar{\zeta} \wedge d\zeta, \quad (7)$$

and using the Taylor expansion and the moment condition to show that the integral is 0. \square

Theorem 1.4 (Hahn-Banach for extension of functionals). *Let V be a vector space (no topology at first). $p : V \rightarrow \mathbb{R}_{\geq 0}$ seminorm, $W \subset V$ subspace, $f : W \rightarrow \mathbb{K}$ linear functional with*

$$|f(w)| \leq p(w), \forall w \in W. \quad (8)$$

That is, f is a continuous linear functional on the locally convex TVS defined by the seminorm p . Then there exists an extension $\tilde{f} : V \rightarrow \mathbb{K}$ of f to the whole V such that \tilde{f} is also a continuous linear functional with p , i.e.

$$|\tilde{f}(v)| \leq p(v), \forall v \in V. \quad (9)$$

and $\tilde{f}|_W = f$.

Proof. In the following discussion we view V as a LCTVS with the seminorm p . Define the convex open set $A = \{v \in V : p(v) < 1\}$ as well as the affined subspace $F = \{v \in W : f(v) = 1\}$. Then by $p \leq f$ we know that $A \cap F = \emptyset$. By geometry Hahn-Banach (open ver.) there exists a closed affined hyperplane $H = \{x : \tilde{f}(x) = 1\}$ containing F and disjoint from A . Since $H \supset F$, we have for $\tilde{f}(x) = 1$ for $x \in F$, thus $\tilde{f}|_W = f$. Also, we can write $|\tilde{f}(x)| = |\tilde{f}(x)| \cdot |\tilde{f}(x/\tilde{f}(x))|$. Since $x/\tilde{f}(x)$ is in H by definition, we have that $p(x/\tilde{f}(x)) \geq 1$, thus $|\tilde{f}(x)| \leq |\tilde{f}(x)| p(x/\tilde{f}(x)) = p(x)$. \square

Example 2 (Existence of weak solution to linear PDEs in the Segal-Bergmann space). *$V = L^2(\mathbb{R}^n, e^{-|x|^2/2} dx)$, the Segal-Bergmann space. Consider the differential operator with constant coefficients $P(D)$ where P is a polynomial and $D = \frac{1}{i}\partial$. We want to solve the equation $P(D)u = f$ for given $f \in V$, i.e. we want to find $u \in V$ such that the equation holds in the weak sense:*

$$\int uQ(D)v = \int fv, \forall v \in C_c^\infty(\mathbb{R}^n). \quad (10)$$

Here, $Q(D) = P(-D)$ is the formal adjoint of $P(D)$.

To do this, we consider the subspace $W = \{Q(D)v : v \in C_c^\infty(\mathbb{R}^n)\}$ of the space $U = L^2(\mathbb{R}^n, e^{-|x|^2/2} dx)$. We define a linear functional $L : W \rightarrow \mathbb{C}$ by

$$L(Q(D)v) = \int fv. \quad (11)$$

We show:

- $\int |fv|^2 \leq \int |v|^2 e^{|x|^2} \int |f|^2 e^{-|x|^2} \lesssim \int |Q(D)v|^2 e^{|x|^2/2}$, thus L is well-defined and bounded.
- *By Hahn-Banach, we can extend L to a bounded linear functional $\tilde{L} : U \rightarrow \mathbb{C}$. By Riesz representation on L^2 , there exists $u \in V$ such that $\tilde{L}(g) = \int ug$ for any $g \in U$. Restrict it back to W , we get*

$$\int uQ(D)v = \tilde{L}(Q(D)v) = L(Q(D)v) = \int fv, \quad \forall v \in C_c^\infty(\mathbb{R}^n), \quad (12)$$

which is exactly the weak solution we want.

2 “Great” Theorems in Functional Analysis

Theorem 2.1 (Baire). *(E, d) complete metric space. $\{U_n\}_{n \geq 1}$ collection of open dense subsets of E . Then $\bigcap_{n \geq 1} U_n$ is dense in E . Equivalently, if $\{F_n\}_{n \geq 1}$ is a collection of closed subsets of E with empty interior, then $\bigcup_{n \geq 1} F_n$ has empty interior.*

Remark 2. *We say that the union of closed sets with empty interiors is a set of first category.*

Theorem 2.2 (Banach inverse mapping theorem). *$T : F_1 \rightarrow F_2$ in an injective bounded linear operator between Banach (or Fréchet) spaces. We have the following dichotomy: $\text{Im } T$ is either of first category in F_2 , or $\text{Im } T = F_2$ and T has a bounded inverse.*

Another version is: T is a bounded linear operator (not necessarily injective) between Banach (or Fréchet) spaces. Then $\text{Im } T$ is either of first category in F_2 , or $\text{Im } T = F_2$. This can be shown by applying the first version to the induced map $\tilde{T} : F_1 / \ker T \rightarrow F_2$.

Proof. The proof is based on Baire’s theorem. Suppose that $\text{Im } T$ is not of first category. For fixed $r > 0$, denote

$$U = B_1(0, r) = \{x \in F_1 : \|x\| \leq r\}. \quad (1)$$

Then $F_1 = \bigcup_{n \geq 1} nU$. Thus

$$\text{Im } T = T(F_1) \subset \bigcup_{n \geq 1} T(nU) = \bigcup_{n \geq 1} n\overline{T(U)}. \quad (2)$$

Note that this is a union of closed sets. Since we assumed that T is not of 1st cat., there exists some n such that there exists an open ball in F_2 contained in $n\overline{T(U)}$. By scaling, symmetry and convexity arguments, there exists some $\rho > 0$ such that $\overline{B_2(0, \rho)} \subset \overline{T(U)}$. Now we denote $U_k := 2^{-k}U$, then there exists $\rho_k > 0$ such that $\overline{B_2(0, \rho_k)} \subset \overline{T(U_k)}$. Thus we have the estimate $\rho_k \leq \|T\|2^{-k}r$. Denote $V_k = B_2(0, \rho_k)$. We are in a position to show that T has a bounded inverse. For any $y \in V_1$, there exists $x_1 \in U_1$ such that $\|y - Tx_1\| \leq \rho_2$, that is, there exists $y_1 \in V_2$ such that $y - Tx_1 = y_1$. Repeating this process we get a sequence $\{x_k\}_{k \geq 1}$ with $x_k \in U_k$ such that

$$y - T\left(\sum_{k=1}^N x_k\right) = y_N \in V_{N+1}. \quad (3)$$

Since $\{\sum_{k=1}^N x_k\}_{N \geq 1}$ is a Cauchy sequence in F_1 , it converges to some $x \in F_1$. Taking limit on both sides we get $Tx = y$. Also, we have the estimate

$$\|x\| \leq \sum_{k=1}^{\infty} \|x_k\| \leq \sum_{k=1}^{\infty} 2^{-k}r = r. \quad (4)$$

Since $y \in V_1$ is arbitrary, we have shown that for any $y \in B_2(0, \rho_1)$, there exists $x \in F_1$ with $\|x\| \leq r$ such that $Tx = y$. Thus the inverse is bounded by $\|T^{-1}\| \leq r/\rho_1$. \square

Example 3. *$L^q([0, 1])$ is of first category in $L^p([0, 1])$ for $1 \leq p < q \leq \infty$. This is because the embedding is proper since $g(x) = x^{-\frac{1}{r}}$ with $p < r \leq q$ is in L^p but not in L^q . By the inverse mapping theorem, the image is of first category.*

Example 4 (The characteristic variety of a linear PDO). *If for any $u \in C^m(\Omega)$, such that $P(D)u = 0$, we have $u \in C^{m+1}(\Omega)$, then an essential condition for this to hold is that the characteristic variety of P , defined as*

$$\Sigma = \{\xi \in \mathbb{C}^n : P(\xi) = 0\}, \quad (5)$$

satisfies $\lim_{|\xi| \rightarrow \infty, \xi \in \Sigma} |\operatorname{Im} \xi| = \infty$. A consequence of this fact is that, for Schrödinger equation, there exists C^2 solution which is not C^3 .

Proof. Consider two Fréchet spaces $F_1 := \{u \in C^{m+1}(\Omega) : P(D)u = 0\}$ and $F_2 := \{u \in C^m(\Omega) : P(D)u = 0\}$. (C^m space are Fréchet with the family of seminorms $\|u\|_K = \sum_{|\alpha| \leq m} \sup_{x \in K} |\partial^\alpha u(x)|$ for $K \subset\subset \Omega$). This is an embedding. But we also hypothesize that this is a surjective, thus the inverse map is continuous. That is

$$\sum_{|\alpha| \leq m+1} \sup_{x \in K} |\partial^\alpha u(x)| \lesssim \sum_{|\beta| \leq m} \sup_{x \in K} |\partial^\beta u(x)|, \forall u \in F_1 = F_2. \quad (6)$$

We take the characteristic function $u(x) = e^{i\xi \cdot x}$ with $\xi \in \Sigma$. Then $P(D)u = P(\xi)e^{i\xi \cdot x} = 0$. Plugging in we get $\frac{A_{m+1}(\xi)}{A_m(\xi)} \lesssim \sup_{x \in K, x' \in K'} e^{-\operatorname{Im} \langle \xi, x - x' \rangle} \lesssim e^{|\operatorname{Im} \xi|}$ for any $\xi \in \Sigma$, where $A_k(\xi) = \sum_{|\alpha| \leq k} |\xi^\alpha|$. Since $\lim_{|\xi| \rightarrow \infty, \xi \in \Sigma} \frac{A_{m+1}(\xi)}{A_m(\xi)} = \infty$, we must have $\lim_{|\xi| \rightarrow \infty, \xi \in \Sigma} |\operatorname{Im} \xi| = \infty$. \square

Theorem 2.3 (Closed graph theorem). *$T : \mathcal{D}(T) \rightarrow F_2$ linear (can be unbounded a priori) and has closed graph ($\mathcal{D}(T) \subset F_1$, F_1, F_2 Banach or Fréchet spaces). Then either $\mathcal{D}(T)$ is of first category in F_1 , or $\mathcal{D}(T)F_1 = F_1$ and T is bounded.*

Proof. Consider the continuous projectors π_1 and π_2 . Since $\mathcal{G}(T)$ is closed, $\pi_1|_{\mathcal{G}(T)}$ is also continuous and $\operatorname{Im} \pi_1|_{\mathcal{G}(T)} = \mathcal{D}(T)$. If $\mathcal{D}(T)$ is not of 1st cat., then $\mathcal{D}(T) = F_1$. In the latter case the inverse $[\pi_1|_{\mathcal{G}(T)}]^{-1} : F_1 \rightarrow \mathcal{G}(T)$ is bounded. Thus $T = \pi_2 \circ [\pi_1|_{\mathcal{G}(T)}]^{-1}$ is also bounded. \square

Theorem 2.4 (Banach-Steinhaus uniform boundedness principle). *F Fréchet, V LCVS, Φ a family of linear conti. operators $F \rightarrow V$. Define the set of pts whose orbits under Φ are bounded: $\Sigma = \{x \in F : \Phi x \text{ is bounded in } V\}$. Then either Σ is of 1st cat., or $\Sigma = F$ and Φ is equi-continuous.*

Proof. Fixed arbitrary balanced nbhd U of 0 in V . We write $\Sigma = \bigcup_{n \geq 1} nA(U)$, where $A(U)$ is the intersection of the preimages of U in V under all maps T in Φ (by the definition of boundedness). If Σ is not of 1st cat., then there exists some n such that $nA(U)$ contains a balanced nbhd W of 0 in F , i.e. $T(W) \subset U$. \square

Example 5 (Divergence of Fourier series). *There exists a continuous function on the circle whose Fourier series diverges at a point. Since we can choose f such that*

$$|S_N f(0)| \gtrsim L_N \|f\|_\infty, \quad L_N = \|D_N\|_1 \gtrsim \sum_{k=1}^N \frac{1}{k} \sim O(\log N), \quad (7)$$

where D_N is the Dirichlet kernel. Then the operators $T_N : C(\mathbb{T}) \rightarrow \mathbb{C}$ defined by $T_N f := S_N f(0)$ is not equi-continuous, thus there must be some $\varphi \in C(\mathbb{T})$ such that $\sup_N |S_N \varphi(0)| = \infty$.

3 Fredholm Theory

Theorem 3.1 (Algebraic Fredholm theory). *Let $T : V_1 \rightarrow V_2$ such that $\dim \ker T = n_+ < \infty$ and $\dim \operatorname{coker} T = n_- < \infty$. Then there exists $R_- : \mathbb{K}^{n_-} \rightarrow V_2$ injective and $R_+ : V_1 \rightarrow \mathbb{K}^{n_+}$ surjective such that the operator*

$$\begin{pmatrix} T & R_- \\ R_+ & 0 \end{pmatrix} : V_1 \oplus \mathbb{K}^{n_-} \rightarrow V_2 \oplus \mathbb{K}^{n_+} \quad (1)$$

is an isomorphism.

Remark 3. Briefly, we can always “complete” a Fredholm operator to an isomorphism by adding finite-dimensional spaces.

Proof. The proof is based on construction.

- We take the basis $\{x_1, \dots, x_{n_+}\}$ of $\ker T$, by Hahn-Banach there exists a “dual basis” of linear functionals on V_1 , $\{x_1^*, \dots, x_{n_+}^*\}$ such that $\langle x_i^*, x_j \rangle = \delta_{ij}$. We define $R_+ : V_1 \rightarrow \mathbb{K}^{n_+}$ as $u \mapsto (\langle x_1^*, u \rangle, \dots, \langle x_{n_+}^*, u \rangle)$. This is surjective by construction. Moreover, $\ker T \cap \ker R_+ = \{0\}$.
- We take the basis $\{[y_1], \dots, [y_{n_-}]\}$ of $\text{coker } T = V_2 / \text{Im } T$. We define $R_- : \mathbb{K}^{n_-} \rightarrow V_2$ as $R_-(e_i) = y_i$, where $\{e_i\}$ is the standard basis of \mathbb{K}^{n_-} . This is injective by construction. Moreover, $\text{Im } T \cap \text{Im } R_- = \{0\}$.

- We check $\tilde{T} := \begin{pmatrix} T & R_- \\ R_+ & 0 \end{pmatrix}$ is (1) surjective since $\tilde{T} \begin{pmatrix} u \\ \begin{pmatrix} c_1 \\ \vdots \\ c_{n_-} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} Tu + \sum_{i=1}^{n_-} c_i y_i \\ R_+ u \end{pmatrix}$, and R_+ is surjective.
(2) injective since $\tilde{T} \begin{pmatrix} u \\ u_- \end{pmatrix} = 0$ iff $Tu + R_- u_- = 0$ and $R_+ u = 0$. Note that $Tu \in \text{Im } T \cap \text{Im } R_- = \{0\}$, and thus $Tu = R_- u_- = 0$. Since R_- is injective, we have $u_- = 0$ and thus $u \in \ker T \cap \ker R_+ = \{0\}$, thus $u = 0$.

□

Proposition 1 (Schur complement formula). $\tilde{T} = \begin{pmatrix} T & R_- \\ R_+ & 0 \end{pmatrix}$ is invertible with $\tilde{T}^{-1} = \begin{pmatrix} E & E_- \\ E_+ & E_{-+} \end{pmatrix}$. Then $\dim \ker T = \dim \ker E_{-+}$, $\dim \text{coker } T = \dim \text{coker } E_{-+}$. In particular, T^{-1} exists iff E_{-+} is invertible, and in this case

$$T^{-1} = E - E_- E_{-+}^{-1} E_+. \quad (2)$$

Note that in this case $\text{Ind } T = \dim \ker T - \dim \text{coker } T = 0$. Therefore E_{-+} is a $n_\pm \times n_\pm$ matrix ($n_+ = n_-$).

Theorem 3.2. $T : B_1 \rightarrow B_2$ Fredholm operator between Banach spaces, $S : B_1 \rightarrow B_2$ continuous with $\|S\| \ll 1$, then

- $T + S$ is also Fredholm,
- $\text{Ind}(T + S) = \text{Ind}(T)$,
- $\dim \ker(T + S) \leq \dim \ker T$, $\dim \text{coker}(T + S) \leq \dim \text{coker } T$.

Proof. $\|S\| \ll 1$ implies that $\left\| \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix} \right\| \ll 1$. Thus $\tilde{T} + \begin{pmatrix} S & 0 \\ 0 & 0 \end{pmatrix}$ is also invertible. Denote its inverse as $\begin{pmatrix} \tilde{E}^S & \tilde{E}^S_- \\ \tilde{E}^S_+ & \tilde{E}^S_{-+} \end{pmatrix}$. Thus $\dim \ker(T + S) = \dim \ker E_{-+}^S \leq n_+$, $\dim \text{coker}(T + S) = \dim \text{coker } E_{-+}^S \leq n_-$, thus $T + S$ is Fredholm with $\text{Ind}(T + S) = n_+ - n_- = \text{Ind } T$. □

Followings are some basic facts about compact operators:

Proposition 2. • $\mathcal{L}_c(B_1, B_2) \subset \mathcal{L}(B_1, B_2)$ is a closed two-sided ideal.

- If T is semi-Fredholm i.e. $\dim \ker T < \infty$ and $\text{Im } T$ is closed, K is a compact operator, then $T + K$ is also semi-Fredholm with $\text{Ind}(T + K) = \text{Ind } T$.

Theorem 3.3 (Atkinson characterization of Fredholm operators). $T : B_1 \rightarrow B_2$ bounded linear operator between Banach spaces, then TFAE:

- T is Fredholm,
- $\exists E : B_2 \rightarrow B_1$, such that $TE = I + R_1$, $ET = I + R_2$ with R_1, R_2 finite rank operators,
- $\exists E : B_2 \rightarrow B_1$, such that $TE = I + K_1$, $ET = I + K_2$ with K_1, K_2 compact operators.
- $\exists E_1 : B_2 \rightarrow B_1$ and $E_2 : B_2 \rightarrow B_1$ such that $TE_1 = I + K_1$, $E_2T = I + K_2$ with K_1, K_2 compact operators.

Remark 4. Briefly, Fredholm operators are invertible up to compact perturbations.

Proof. (1) \implies (2) By algebraic Fredholm theory,

$$\begin{pmatrix} T & R_- \\ R_+ & 0 \end{pmatrix} \begin{pmatrix} E & E_- \\ E_+ & E_{-+} \end{pmatrix} = \begin{pmatrix} TE + R_- E_- & * \\ * & R_+ E_+ \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}. \quad (3)$$

$$\begin{pmatrix} E & E_- \\ E_+ & E_{-+} \end{pmatrix} \begin{pmatrix} T & R_- \\ R_+ & 0 \end{pmatrix} = \begin{pmatrix} ET + E_- R_+ & * \\ * & E_+ R_- \end{pmatrix} = \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix}. \quad (4)$$

Thus reading the first row/column we get the desired result with $R_1 = R_- E_-$ and $R_2 = E_- R_+$, both finite rank.

(2) \implies (3) and (3) \implies (4) are trivial.

(4) \implies (1) $TE_1 = I + K_1$, thus $\text{Im } T \supset \text{Im}(I + K_1)$, which implies $\text{codim Im } T < \infty$ (since $I + K_1$ is Fredholm with index 0, because K_1 is compact). Similarly, $E_2T = I + K_2$ implies $\dim \ker T < \infty$. Thus T is Fredholm. \square

Example 6 (Application: Toeplitz operators). $H_2 = \{f \in L^2 : f(x) = \sum_{n \geq 0} a_n e^{inx}\}$ the Hardy space on the circle. Let $f \in C(\mathbb{T})$ and $f(e^{i\theta}) = \sum_{m \in \mathbb{Z}} \hat{f}_m e^{im\theta}$ be its Fourier series. The Toeplitz operator $T_f : H_2 \rightarrow H_2$ is defined as $T_f u = P(fu)$ where P is a projection from L^2 to H_2 (view as a strip-like matrix acting on ℓ^2 the Fourier coefficients). Then T_f is Fredholm with

$$\text{Ind } T_f = -\text{winding number of } f \text{ around } 0 = -\frac{1}{2\pi} [\arg f(e^{i\theta})]_{\theta=0}^{2\pi} = -\frac{1}{2\pi i} \int_0^{2\pi} \frac{f'(e^{i\theta})}{f(e^{i\theta})} d\theta. \quad (5)$$

Here $|f| > 0$ on \mathbb{T} .

Proof. We have $f, g \in C(\mathbb{T})$ implies $T_f T_g - T_{fg} \in \mathcal{L}_c(H_2)$. This is because for p, q being trigonometric polynomials we have by suitable cutoffs that $T_p T_q - T_{pq}$ is of finite rank. Thus by the fact that \mathcal{L} is compact and that $\|T_f\| = \|f\|_\infty$ and that trigonometric polynomials are dense in $C(\mathbb{T})$, we get the desired result. Now if f is nowhere vanishing, then there exists $g \in C(\mathbb{T})$ such that $fg = 1$. Thus $T_f T_g = I + K_1$, $T_g T_f = I + K_2$ with K_1, K_2 compact. By Atkinson's theorem, T_f is Fredholm. We compute that $\text{Ind } T_{e_n}$ which is a translation operator is $-n$. Thus $\text{Ind } T_{e_n} = -\text{winding number of } e_n \text{ around } 0$. Now it remains to show that for f with zero argument variation, $\text{Ind } T_f = 0$. In such case we write $f = e^F$ with $F \in C(\mathbb{T})$ continuous. Note that index is stable on a homotopy we have $\text{Ind } T_f = \text{Ind } T_{e^F}|_{t=0}^1 = \text{Ind } T_1 = 0$. \square

Theorem 3.4 (Riesz). *Suppose $S \in \mathcal{L}_c(B)$, $N_k := \ker(I + S)^k$, then there exists some J such that $N = \bigcup_{k \geq 0} N_k = \ker(I + S)^J$. Moreover, for the same J , $F = \bigcap_{j \geq 0} F_j = \text{Im}(I + S)^J$ with $F_j = \text{Im}(I + S)^j$, and we have the topological direct sum decomposition $B = N \oplus F$, both N and F are invariant under S , and $(I + S)|_F$ is invertible.*

Proof. If the ascending chain N_k never stabilizes, then by the proof of “identity is compact iff finite dimensional” we can find $x_k \in N_k$ such that $\|x - x_k\| \geq 1$ for any $x \in N_{k-1}$ and $\|x_k\| = 1$. Let $x = (I + S)x_k - Sx_j$ ($j \leq k - 1$), then since N_{k-1} is S -invariant, we have that $x \in N_{k-1}$ and thus $\|x - x_k\| = \|S(x_k - x_j)\| \geq 1$. This means that $\{Sx_k\}$ has no Cauchy subsequence, contradicting the compactness of S . Thus N_k stabilizes at some J . Similarly for F_j by the fact that $\dim \ker(I + S)^{J+1} = \dim \ker(I + S)^J$ implies $\dim \text{coker}(I + S)^{J+1} = \dim \text{coker}(I + S)^J$ implies $\text{Im}(I + S)^{J+1} = \text{Im}(I + S)^J$. (Note that S is compact and thus $I + S$ is Fredholm with index $\text{Ind}(I + S) = \text{Ind}(I) = 0$.)

Now N is a finite union of finite dimensional spaces, thus is finite dimensional (or directly note that $(I + S)^J = I + \text{compact}$ is Fredholm), and F is closed, thus this direct sum is topological. \square

Theorem 3.5 (Analytical Fredholm theory). *We assume that $\Omega \ni z \mapsto A(z)$ is a meromorphic family of Fredholm operators on B , such that $A(z_0)^{-1}$ exists for some z_0 . Then $\Omega \ni z \mapsto A(z)^{-1}$ is meromorphic with values in $\mathcal{L}(B)$, with poles of finite rank.*

Proof. Since $\text{Ind}(A(z_0)) = 0$ and index is stable under continuous perturbations, we have $\text{Ind}(A(w)) = 0$ for any $w \in \Omega$ (Ω is a connected open set). Thus the Grushin operator $\begin{pmatrix} A(w) & R_-^w \\ R_+^w & 0 \end{pmatrix}$ is invertible. In a neighborhood of w , $z \mapsto \begin{pmatrix} A(z) & R_-^w \\ R_+^w & 0 \end{pmatrix}$ is still invertible. Since $z \mapsto A(z)$ is holomorphic, we have $z \mapsto E_*^w(z)$ ($*$ = NONE, $-$, $+$, $-+$) are also holomorphic. Thus by Schur complement formula, we have

$$A(z)^{-1} = E^w(z) - E_-^w(z)(E_{-+}^w(z))^{-1}E_+^w(z). \quad (6)$$

By finite-dimensional argument, since $\det E_{-+}^w(z)$ is holomorphic and non-vanishing at $z = w$, $E_-^w(z)(E_{-+}^w(z))^{-1}E_+^w(z)$ is meromorphic with poles of finite rank at $z = w$. Together with the holomorphy of $E^w(z)$, we get the desired result. \square

Example 7 (Application: Riesz projectors). *$P : X_1 \rightarrow X_2$ is continuous inclusion, then by analytic Fredholm theory,*

$$(P - zI)^{-1} = - \left(\frac{\Pi}{z - z_1} + \cdots + \frac{(P - z_1)^{N+1}\Pi}{(z - z_1)^N} \right) + R_0(z) \quad (7)$$

where z_1 is a pole, $z \mapsto R_0(z)$ is holomorphic, and $\Pi : X_2 \rightarrow \ker(P - z_1 I)^N$ is the Riesz projector onto the generalized eigenspace of P at z_1 . We can recover the Atkinson result by noting $N = \Pi X_1$, $F = (I - \Pi)X_1$.

Proof. WLOG $z_1 = 0$, applying analytic Fredholm theory to $P - zI$, we have

$$(P - zI)^{-1} = \frac{A_1}{z} + \frac{A_2}{z^2} + \cdots + \frac{A_N}{z^N} + R_0(z), \quad (8)$$

$$\Pi := -A_1 = -\frac{1}{2\pi i} \oint_{|z|=\epsilon} (P - zI)^{-1} dz, \quad (9)$$

$$\Pi^2 = -\frac{1}{4\pi} \oint_{|z|=\epsilon} \oint_{|w|=\epsilon} (P - zI)^{-1}(P - wI)^{-1} dz dw = -\frac{1}{2\pi i} \oint_{|z|=\epsilon} (P - zI)^{-1} dz = \Pi, \quad (10)$$

applying $(P - z)$ on both sides and matching the terms, we get $PA_{-N} = 0$ and $PA_{-k} = A_{-k-1}$ ($k < N$), and $\Pi + (P - z)R(z) = I \Rightarrow (P - z)R(z) = I - \Pi \Rightarrow (P - z)(I - \Pi)R(z) = I - \Pi \Rightarrow PR(0)(I - \Pi) = I - \Pi$, (11) therefore $P|_{\text{Im}(I - \Pi)}$ is invertible, and

$$N = \text{Im } \Pi = \ker P^N, \quad F = \text{Im}(I - \Pi) = \text{Im } P^N. \quad (12)$$

We recover the Atkinson decomposition $X_1 = N \oplus F$. \square

4 Duality

First we give the two main results for dual operators.

Theorem 4.1. $T \in \mathcal{L}(B_1, B_2)$, $\text{Im } T$ closed, then $\text{Im } T^*$ is also closed and

- $(\ker T)^\circ = \text{Im } T^*$, $\ker T^* = (\text{Im } T)^\circ$,
- $\dim \ker T = \dim \text{coker } T^*$, $\dim \text{coker } T = \dim \ker T^*$,
- In particular, if T is Fredholm, then so is T^* with $\text{Ind } T^* = -\text{Ind } T$.

The proof is based on the following algebraic result:

Theorem 4.2. $W \subset B$ is closed, define

$$\iota^* : B^* \rightarrow W^*, \quad \iota^*|_{W^\circ} = 0, \quad (\iota^*)' : B^*/W^\circ \rightarrow W^* \text{ is an isometric isomorphism.} \quad (1)$$

$$q^* : (B/W)^* \rightarrow B^*, \quad q^*((B/W)^*) = W^\circ, \quad q^* : (B/W)^* \rightarrow W^\circ \text{ is an isometric isomorphism.} \quad (2)$$

Proof. • $\iota^*\xi = \xi|_W$ since ι is an embedding. Thus $\iota^*\xi = 0$, if and only if $\xi \in W^\circ$. For any $\eta \in W^*$, by HB $\exists \xi \in B^*$ such that $\xi|_W = \eta$ and $\|\xi\| = \|\eta\|$. Thus $\|\iota^*\xi\| = \|\eta\| = \|[\xi]_{W^\circ}\|$. Thus $(\iota^*)'$ is an isometric isomorphism.

- For any $\zeta \in (B/W)^*$, we consider

$$\langle x, q^*\zeta \rangle = \langle qx, \zeta \rangle = \langle [x]_W, \zeta \rangle \quad (3)$$

Thus $q^*\zeta : x \mapsto \langle [x]_W, \zeta \rangle$, therefore $q^*\zeta \in W^\circ$ because $[x]_W = [0]_W$ for $x \in W$. We take any $\xi \in W^\circ$, $\xi' : B/W \rightarrow \mathbb{K}$ is well-defined since $\xi|_W = 0$. Moreover, $\|\xi'\| = \|\xi\|$. Therefore q^* is an isometric isomorphism. \square

Proof of the theorem. If T is bijective, then there exists S such that $ST = I_{B_1}$, $T^*S^* = I_{B_1^*}$, $S^*T^* = I_{B_2^*}$, thus all the results hold trivially.

If T is not bijective, define

$$T_1 : B_1 \rightarrow B_1/\ker T, \quad T_2 : B_1/\ker T \rightarrow \text{Im } T, \quad T_3 : \text{Im } T \rightarrow B_2, \quad (4)$$

then T_1 is surjective, T_2 is bijective, T_3 is injective. $T = T_3 \circ T_2 \circ T_1$, thus $T^* = T_1^* \circ T_2^* \circ T_3^*$.

$$T_1^* : (B_1/\ker T)^* \rightarrow B_1, \quad T_3^* : B_2^* \rightarrow (\text{Im } T)^*. \quad (5)$$

Since $(B_1 / \ker T)^* \cong (\ker T)^\circ$, thus $\text{Im } T_1^* \cong (\ker T)^\circ$. Since $(\text{Im } T)^* \cong B_2^*/(\text{Im } T)^\circ$, thus $\ker T_3^* = (\text{Im } T)^\circ$.

T_1 surjective $\implies T_1^*$ injective, T_3 injective $\implies T_3^*$ surjective. T_2 bijective $\implies T_2^*$ bijective. Thus we have

$$\text{Im } T^* = \text{Im}(T_1^* T_2^* T_3^*) = \text{Im } T_1^* \cong (\ker T)^\circ, \quad (6)$$

$$\ker T^* = \ker(T_1^* T_2^* T_3^*) = \ker T_3^* = (\text{Im } T)^\circ. \quad (7)$$

For the dimensional relations, we just note that the dimension of a subspace equals to its dual space, thus

$$\dim \ker T = \dim(\ker T)^* = \dim(B_1^*/(\ker T)^\circ) = \dim(B_1^*/\text{Im } T^*) = \dim \text{coker } T^*, \quad (8)$$

$$\dim \text{coker } T = \dim(\text{coker } T)^* = \dim(B/\text{Im } T)^* = \dim(\text{Im } T)^\circ = \dim \ker T^*. \quad (9)$$

□

Theorem 4.3. *If $T \in \mathcal{L}_c(B_1, B_2)$, then $T^* \in \mathcal{L}_c(B_2^*, B_1^*)$.*

Proof. We need to show that for $\xi_n \in B_2^*$, $T^* \xi_n$ has a convergent subsequence. We define $K = \{Tx : \|x\|_{B_1} \leq 1\} \subset\subset B_2$. Note that $\{\xi_n\}$ is in $C(K)$ and $|\xi_j y| \leq \|\xi_j\| \|y\| = \|y\|$. Therefore by Arzelà-Ascoli theorem, there exists a convergent subsequence $\xi_{n_k} \rightarrow \xi$ in $C(K)$. By passing to a subsequence we assume that ξ_j is convergent in $C(K)$, thus

$$\|T^* \xi_j - T^* \xi_k\|_{B_1^*} \leq \sup_{x \in B_1, \|x\| \leq 1} |\langle T^*(\xi_j - \xi_k), x \rangle| = \sup_{x \in B_1, \|x\| \leq 1} \langle \xi_j - \xi_k, Tx \rangle \leq \|\xi_j - \xi_k\|_{C(K)} \rightarrow 0. \quad (10)$$

□

Theorem 4.4 (Banach-Alaoglu). *U is the closed unit ball in B^* , then U is compact in the weak-* topology.*

Proof. Only prove for the case B is separable. Let $\{x_n\}$ be a dense subset of B . We consider the seminorms

$$p_n(\xi) = |\langle \xi, x_n \rangle|, \quad \xi \in B^*. \quad (11)$$

We claim that the topology generated by these seminorms is exactly the weak-* topology on B^* . By the following lemma, indeed, enough to show that for any given $x, \varepsilon > 0$, there exists some $j, \delta > 0$ such that $\{\xi : |\langle x, \xi \rangle| < \varepsilon\} \supset \{\xi : |\langle x_j, \xi \rangle| < \delta\}$. We find x_j such that $\|x - x_j\| \leq \frac{\varepsilon}{10}$ and take $\delta = \frac{\varepsilon}{10}$, we have

$$|\langle x, \xi \rangle| \leq \|x - x_j\| \|\xi\| + \delta \leq \rho + \delta < \varepsilon. \quad (12)$$

Thus we only need to show that $\xi_n \in U$ has a subsequence such that $\langle x_j, \xi_{n_k} \rangle$ converges for any j . By diagonal argument, we can find such subsequence. □

Example 8. *$\{f_n\}$ a bounded sequence in L^q . By Banach Alaoglu, there exists a subsequence $\{f_{n_k}\}$ and some $f \in L^q$ such that for any $g \in L^p$ ($\frac{1}{p} + \frac{1}{q} = 1$), we have*

$$\int f_{n_k} g \, dx \rightarrow \int f g \, dx. \quad (13)$$

Lemma 1. *$L : F \rightarrow \mathbb{K}$ is continuous linear functional with respect to the topology $\sigma(F, G)$ (generated by the huge number of seminorms $x \mapsto |\langle x, y \rangle|$ for each fixed $y \in G$, and $y \mapsto \langle x, y \rangle$ is linear for each fixed $x \in F$). Then $\exists y \in G$ such that $L(x) = \langle x, y \rangle$ for any $x \in F$. In particular, if $\xi_n - \xi_m$ converges to 0 in weak-*, then there exists some $\xi \in B^*$ such that ξ_n converges to ξ in weak-*.*

Proof. Since L is continuous, there exists some finite number of seminorms and $C > 0$ such that

$$|L(x)| \leq C \sum_{j=1}^N |\langle x, y_j \rangle|, \quad \forall x \in F. \quad (14)$$

We define $N = \{x \in F : \langle x, y_j \rangle = 0, j = 1, \dots, N\}$, then $L|_N = 0$, F/N is finite dimensional. We define L' and Y_j on F/N as

$$L'([x]) = L(x), \quad Y_j([x]) = \langle x, y_j \rangle. \quad (15)$$

Then they are all well-defined. Note that

$$\dim \text{Span}(Y_1, \dots, Y_N) \leq N = \dim(F/N)^* - \dim[\text{Span}(Y_1, \dots, Y_N)]^\circ = \dim(F/N) - \dim\{[0]\} = \dim(F/N), \quad (16)$$

thus we have $F/N = \text{Span}(Y_1, \dots, Y_N)$. Therefore there exists c_j such that $L' = \sum_{j=1}^N c_j Y_j$. Thus for any $x \in F$, we have

$$L(x) = L'([x]) = \sum_{j=1}^N c_j Y_j([x]) = \sum_{j=1}^N c_j \langle x, y_j \rangle = \langle x, \sum_{j=1}^N c_j y_j \rangle. \quad (17)$$

We take $y = \sum_{j=1}^N c_j y_j \in G$, and we are done. \square

Corollary 2. $M \subset B^*$, then M is closed in weak-* iff $M \cap U$ is closed in weak-*.

Corollary 3. If $\text{Im } T^*$ is closed, then $\text{Im } T$ is also closed.

5 Spectral Theorem for Self-Adjoint Operators

Example 9. $Tu = \frac{1}{i}u'$ on $H = L^2(0, 1)$. If $\mathcal{D}_1 = C_c^\infty(0, 1)$, then T is symmetric (since no boundary terms). If $\mathcal{D}_2 = \{u \in L^2 : u' \in L^2\}$ (u' is the weak derivative), then T is not symmetric.

Definition 5.1. T densely defined, we say that $u \in \mathcal{D}_{A^*}$ if $v \mapsto \langle u, Av \rangle$ is continuous on \mathcal{D}_A with respect to the norm of H . In such case, since \mathcal{D}_A is dense in H , the continuous linear functional uniquely extends to H and thus by Riesz representation theorem there exists a unique $f \in H$ such that $\langle u, Av \rangle = \langle f, v \rangle$ for any $v \in \mathcal{D}_A$. We define $A^*u = f$.

Proposition 3. A closed and symmetric, then for any $z \in \mathbb{C} \setminus \mathbb{R}$, we have

- $\ker(A - zI) = \{0\}$,
- $\text{Im}(A - zI)$ is closed,
- $|\text{Im } z| \|u\| \leq \|(A - zI)u\|$ for any $u \in \mathcal{D}_A$.

Proof. We only need to prove the last item, since the first two follow directly. We compute

$$\|(A - z)u\|^2 = \|Bu\|^2 + (\text{Im } z)^2 \|u\|^2 \geq (\text{Im } z)^2 \|u\|^2. \quad (1)$$

\square

Proposition 4. *A symmetric and densely defined, then define*

$$n_{\pm} = \dim \ker(A^* \pm i) = \dim \text{coker}(A \mp i). \quad (2)$$

We have that $\text{codim } \text{Im}(A - z) = \dim \ker(A^* - \bar{z})$ is constant on $\{\text{Im } z > 0\}$ and $\{\text{Im } z < 0\}$ respectively, equal to n_+ and n_- . (They are called the deficiency indices of A .)

Proof. We first directly verify that $\ker(A^* - \bar{z}) = [\text{Im}(A - z)]^\perp$ by the density of \mathcal{D}_A . Thus $\text{codim } \text{Im}(A - z) = \dim \text{coker}(A^* - \bar{z})$. Now we want to apply the Fredholm theory argument but cannot directly do this for unbdd operators. Thus we consider the graph operators:

$$T : \mathcal{G}(A) \ni (u, Au) \mapsto (A - z)u \in H, \quad (3)$$

$$S : \mathcal{G}(A) \ni (u, Au) \mapsto -\zeta u \in H. \quad (4)$$

For $\text{Im } z > 0$ and $|\zeta| \ll 1$, note that $\ker(A - z) = 0$ and $\text{Im}(A - z)$ is closed ($z \notin \mathbb{R}$), we have $\ker T = 0$ and $\text{Im } T$ is closed (semi-Fredholm). By the Fredholm theory we have $\text{Ind}(T + S) = \text{Ind}(T)$ for ζ small enough. That is, $\text{Ind}T = -\text{codim}(\text{Im}(A - z)) = -\text{codim}(\text{Im}(A - z - \zeta))$. Thus $\text{codim } \text{Im}(A - z)$ is constant for $\text{Im } z > 0$. Similarly for $\text{Im } z < 0$. \square

Proposition 5. *A is self-adjoint iff $n_+ = n_- = 0$.*

Proof. If A is self-adjoint, then $n_{\pm} = \dim \ker(A^* \pm i) = \dim \ker(A \pm i) = 0$, since $\pm i \notin \mathbb{R}$ and the fact that A is closed and symmetric (self-adjointness implies closedness, since an adjoint opeartor is always closed). If $u \in \mathcal{D}_{A^*}$ and $\text{Im } z > 0$, since $n_+ = 0$, we have $\text{Im}(A - z) = H$, thus $\exists v \in \mathcal{D}_A$, $(A - z)v = (A^* - z)u$, since A is symmetric, we have $(A^* - z)(u - v) = 0$, by $n_- = 0$ we have $u = v \in \mathcal{D}_A$. \square

Theorem 5.2 (Kato). *Suppose A is s.a. with domain \mathcal{D}_A , and V is symmetric with $\mathcal{D}_V \supset \mathcal{D}_A$. If there exists $0 \leq a < 1$, $b > 0$ such that for any $u \in \mathcal{D}_A$, $\|Vu\| \leq a\|Au\| + b\|u\|$, then $A + V$ with domain \mathcal{D}_A is also s.a.*

Proof. By the assumption graph norms of A and the norm of $A + tV$ ($0 \leq t \leq 1$) are equivalent. We WTS $n_{\pm}(t) := \text{codim}(A + tV \pm i)$. Once we have this, then $n_{\pm}(0) = 0$ implies $n_{\pm}(1) = 0$, thus $A + V$ is s.a. We consider the graph operators:

$$T : \mathcal{G}(A + tV \pm i) \rightarrow H, \quad T(u, (A + tV \pm i)u) = (A + tV \pm i)u, \quad (5)$$

$$S : \mathcal{G}(A + tV \pm i) \rightarrow H, \quad S(u, (A + tV \pm i)u) = \zeta u, \quad |\zeta| \ll 1. \quad (6)$$

$\text{Im } T$ closed, $\ker T = \{0\}$, $\|S\| \ll 1$. By Fredholm, $\text{Im}(T + S)$ is closed, $\ker(T + S) = \{0\}$, and $\text{codim } \text{Im}(T + S) = -\text{Ind}(T + S) = -\text{Ind}T = \text{codim } \text{Im } T$. Thus $n_{\pm}(t)$ is constant in t . \square

Example 10. $H = H_0 + \gamma|x|^{-1}$ on $L^2(\mathbb{R}^3)$, $H_0 = -\Delta$, $\gamma \in \mathbb{R}$, $\mathcal{D}_{H_0} = \{u \in L^2 : \Delta u \in L^2\}$ is s.a. with $\mathcal{D}_H = \mathcal{D}_{H_0}$.

Proof. We prove the following estimate:

$$\int \frac{|\chi u|^2}{|x|^2} \lesssim \|\Delta u\|^2 + \|u\|^2, \quad (7)$$

then use Kato's theorem to conclude. \square

Remark 5. *Remark of history: Kato also proved the many-body version of this theorem.*

Theorem 5.3 (Cayley transform). *If A is symmetric, densely defined, then $T : (A + i)u \mapsto (A - i)u$ with $\mathcal{D}_T = (A + i)\mathcal{D}_A$ is isometric, $\text{Im}(I - T)$ is dense, $\ker(I - T) = \{0\}$ and $\mathcal{D}_A = (I - T)\mathcal{D}_T$.*

Conversely, if T is isometric with $\text{Im}(I - T)$ dense and $\ker(I - T) = \{0\}$, then $A : (I - T)v \mapsto i(I + T)v$ with $\mathcal{D}_A = (I - T)\mathcal{D}_T$ is symmetric and densely defined.

Corollary 4. *Suppose A is symmetric and densely defined and closed, then A has a s.a. extension iff $n_+ = n_-$.*

Proof. By Cayley transform, A has a s.a. extension iff T has a unitary extension. This iff

$$\text{codim } \mathcal{D}_T = \text{codim } \text{Im } T. \quad (8)$$

Since $\mathcal{D}_T = \text{Im}(A + i)$, $\text{Im } T = \text{Im } i(A + I) = \text{Im}(A - i)$, we have the desired result. \square

Theorem 5.4 (Spectral theorem I). *There exists a unique operator-valued mapping $f \mapsto f(H) \in \mathcal{L}(\mathcal{H})$ for any s.a. operator H on a Hilbert space \mathcal{H} and $f \in C(\mathbb{R})$ such that*

- $(fg)(H) = f(H)g(H)$,
- $f(H)^* = \bar{f}(H)$,
- The functional calculus of $r_w(z) = (w - z)^{-1}$ is the resolvent, i.e. $r_w(H) = (H - wI)^{-1}$,
- If $\text{supp } f$ is away from $\sigma(H)$, then $f(H) = 0$,

Definition 5.5. *We say that $L \subset \mathcal{H}$ closed subspace is invariant under H , if $(H - z)^{-1}v \in L$ for any $v \in \mathcal{H}$ and $z \in \mathbb{C} \setminus \mathbb{R}$.*

Lemma 2. *\mathcal{H} is separable, then $\exists L_j \subset \mathcal{H}$ cyclic subspaces (i.e. $\exists u_j \in L_j$ such that $L_j = \overline{\text{Span}\{(H - z)^{-1}u_j : z \notin \mathbb{R}\}}$) such that $\mathcal{H} = \bigoplus_j L_j$ and $L_j \perp L_k$ for $j \neq k$.*

Theorem 5.6 (Spectral theorem II). *H is s.a. on \mathcal{H} , $S = \sigma(H) \subset \mathbb{R}$, then there exists a μ finite measure on $S \times \mathbb{N}$, and a unitary operator $U : \mathcal{H} \rightarrow L^2(S \times \mathbb{N}, d\mu)$ such that*

- *If $h : S \times \mathbb{N} \rightarrow \mathbb{R}$ is the function:*

$$h(\lambda, n) = \lambda, \quad (9)$$

(i.e. the multiplication by λ on copies indexed by n), then $\xi \in \mathcal{D}_H$ iff $hU(\xi) \in L^2(S \times \mathbb{N}, d\mu)$, and for such ξ we have the diagonalization

$$UHU^{-1}\zeta = h\zeta, \quad (10)$$

for any $\zeta \in U(\mathcal{D}_H)$.

- *We have the functional calculus*

$$Uf(H)U^{-1}\zeta = f(h)\zeta. \quad (11)$$

In the case where we have a cyclic vector, i.e.

$$\mathcal{H} = \overline{\text{Span}\{(z - H)^{-1}v : z \in \mathbb{C} \setminus \mathbb{R}\}} \quad (12)$$

Then the spectral theorem II can be simplified as follows:

Theorem 5.7 (Spectral theorem II'). $\exists \mu$ a finite measure on S , $U : \mathcal{H} \rightarrow L^2(S, d\mu)$ unitary such that

- $\xi \in \mathcal{D}_H$ iff $hU(\xi) \in L^2(S, d\mu)$, h is the multiplication by λ on S , and
- we have the diagonalization

$$UHU^{-1}\zeta = h\zeta, \quad (13)$$

for any $\zeta \in U(\mathcal{D}_H)$.

- we have the functional calculus.