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1 Hahn-Banach Theorem

Theorem 1.1 (Geometric Hahn-Banach for convex sets). V vector space over K = R. Suppose A is
convex and linearly open. W (affined) subspace of V, with AN W = @, then 9 a(n) (affined) hyperplane
H containing W and disjoint from A.

Remark 1. o Wesay A C Vis convex, if {t e R : x +ty € A} is an interval in R for any x,y € V, or
equivalently, for any x,y € A and 0 < A1 < 1, we have Ax + (1 — )y € A.

o We say that A C 'V is linearly open, if it is convex and for any x,y € A, {t : x + ty € A} is an open
interval in R.

Theorem 1.2 (Hahn-Banach Theorem for topological vector spaces). V topological vector space over
K =R orC. Suppose A C V is convex and open, and W is a(n) (affined) subspace with AN W = @, then
d a(n) (affined) closed hyperplane H containing W and disjoint from A.

Proof. (Sketch) A open implies A linearly open. Applying Theorem 1.1 there exists a hyperplane H
containing W and disjoint from A. Since V \ A is closed, we have H C V\ A. codimH < 1 and H is not V,
thus H is also a hyperplane. For K = C, we first view V as over R and find H, closed and codimg H, = 1.
Then consider H = H; N (iH;). Then H is closed, a C-subspace, and has codimension 2 over R thus
codimension 1 over C.

O



Theorem 1.3 (Hahn-Banach for LCTVS, closed version). V a locally convex topological vector space,
B closed convex. x ¢ B. Then there exists a continuous linear functional f : V — K such that {f(x) =
fO)} N B = @. Or analytically,

inf|f(x) = f(»)I > 0. (1)
yeB

Proof. The strategy is recasting it to the open version. Find a balanced nbhd N of 0 such that (x+N)NB =
@ and x ¢ A := B+ N. By the open version there exists closed H containing x and disjoint from A. This
means f(x+2z;) # f(y+2z) forany y € B,z1,2, € N, thus f(N) # {0} but f(N) is balanced around 0 in K
thus inf,ez [f(x) — f(y)| > 0. O

Corollary 1. Same setting as above. Suppose W C V a subspace, then W can be characterized as

W= ﬂ ker f = ﬂ H. 2)

[ continuous linear functional H closed hyperplane
flw=0 HoW

Proof. If x € W, ker f > W and by closedness we know that ker f > W and we know that x in the
intersection. Conversely, if x ¢ W, we want to find f continuous such that |y = 0 but f(x) # 0. This
can be done by finding f such that f(x) # f(y) for any y € W (W closed and convex and away from x).
If f(y) # 0, then f(x) # f(f(x)/f(y) - y) = f(x), which is a contradiction. O

Example 1 (Runge’s approximation). Let K C C compact, suppose C\ K is connected. Then any function
holomorphic in a neighborhood of K can be approximated uniformly on K by polynomials.

Proof. We recall the Riesz representation of C(K)*: for any linear functional L on C(K) we can write it
as

Lqriﬁf@mm> 3)

with some complex finite Borel measure i supported on K. Now using the characterization of the closure
of subspace, the closure of W with W the space of polynomials in C(K) is

W= ﬂ ker L. €))

Thus to show that any holomorphic f on nbhd(K) is in W, we only need to show that for any y with

| aur=0.m > 0 5)
K
we have
f J(2)du(z) = 0. (6)
K
This is done by the integral formula
1 -
f@duz) = —5— ———00(0) f(H)du()dd A dd, (7
K 21 g —Z

and using the Taylor expansion and the moment condition to show that the integral is O. O



Theorem 1.4 (Hahn-Banach for extension of functionals). Let V be a vector space (no topology at first).
p .V — Ry seminorm, W C V subspace, f : W — K linear functional with

lfW)I < pw), Yw € W. ®)

That is, f is a continuous linear functional on the locally convex TVS defined by the seminorm p. Then
there exists an extension f : V — Kof f to the whole V such that f is also a continuous linear functional
with p, i.e.

'f(v)‘ < p),¥v e V. )

and flw = f.

Proof. In the following discussion we view V as a LCTVS with the seminorm p. Define the convex open
set A ={veV:pk) < 1}as well as the affined subspace F = {v € W : f(v) = 1}. Thenby p < f we
know that AN F = @. By geometry Hahn-Banach (open ver.) there exists a closed affined hyperplane

H = f(x) = 1} containing F and disjoint from A. Since H O F, we have for f (x) =1 for x € F, thus
f|W = f. Also, we can write ‘f(x)‘ = ‘f(x)‘ . ‘f(x/f(x))‘. Since x/f(x) is in H by definition, we have that
p (/7)) = 1, thus |Fo)| < |FCo|p(er Fo) = po. 0

Example 2 (Existence of weak solution to linear PDEs in the Segal-Bergmann space). V = L*(R", e /2dx),
the Segal-Bergmann space. Consider the differential operator with constant coefficients P(D) where P is

a polynomial and D = %(9. We want to solve the equation P(D)u = f for given f € V, i.e. we want to find

u € V such that the equation holds in the weak sense:

qu(D)v = ffv, Vv e CO(R"). (10)

Here, Q(D) = P(—D) is the formal adjoint of P(D).
To do this, we consider the subspace W = {Q(D)v : v € CX(R")} of the space U = L*(R", enP/ 2dx).
We define a linear functional L : W — C by

L(Q(D)v) = ffV- (11)

We show:

. f|fV|2 < fl\/lzelx|2 f|f|2€_‘)‘|2 < fIQ(D)vlzelxlz/z, thus L is well-defined and bounded.

e By Hahn-Banach, we can extend L to a bounded linear functional L:U—C. By Riesz represen-
tation on L?, there exists u € V such that L(g) = f ug for any g € U. Restrict it back to W, we
get

f uQ(D)v = L(Q(D)v) = L(Q(D)v) = f Jv. YveCIRY, (12)

which is exactly the weak solution we want.



2 “Great” Theorems in Functional Analysis

Theorem 2.1 (Baire). (E,d) complete metric space. {U,},> collection of open dense subsets of E. Then
(=1 Uy is dense in E. Equivalently, if {F,},>1 is a collection of closed subsets of E with empty interior,
then | J, F,, has empty interior.

Remark 2. We say that the union of closed sets with empty interiors is a set of first category.

Theorem 2.2 (Banach inverse mapping theorem). 7 : Fy — F, in an injective bounded linear operator
between Banach (or Fréchet) spaces. We have the following dichotomy: Im T is either of first category
inF,orImT = F, and T has a bounded inverse.

Another version is: T is a bounded linear operator (not necessarily injective) between Banach (or
Fréchet) spaces. Then Im T is either of first category in F,, or ImT = F,. This can be shown by applying
the first version to the induced map T:F 1/ kerT — Fs.

Proof. The proof is based on Baire’s theorem. Suppose that Im 7 is not of first category. For fixed r > 0,
denote

U=B0,r)={xeF, :|x||<r. (1)
Then Fy = {J,»; nU. Thus
ImT = T(F,) C U T(nU) = UnT(U). 2)
n>1 n>1

Note that this is a union of closed sets. Since we assumed that 7 is not of 1st cat., there exists some »n such
that there exists an open ball in F, contained in n7T(U). By scaling, symmetry and convexity arguments,
there exists some p > 0 such that B,(0,p) C T(U). Now we denote Uy := 27%U, then there exists p; > 0
such that B,(0,pr) € T(Uy). Thus we have the estimate p; < ||T|127*r. Denote Vi, = B»(0,p;). We
are in a position to show that 7" has a bounded inverse. For any y € Vi, there exists x; € U; such that
lly — Txi|| < p,, that is, there exists y; € V, such that y — Tx; = y;. Repeating this process we get a

sequence {x;};>; With x; € Uy such that

N
y=T (Z Xk) =yn € Vi1 (3)

k=1

Since {Zsz1 X¢}ns1 18 @ Cauchy sequence in F, it converges to some x € F|. Taking limit on both sides
we get Tx = y. Also, we have the estimate

Il < > ldl < Y 2% = )
k=1 k=1

Since y € V| is arbitrary, we have shown that for any y € B,(0, p;), there exists x € F; with ||x]| < r such
that 7x = y. Thus the inverse is bounded by ||T‘1|| <r/pi. O

Example 3. L9([0, 1]) is of first category in L ([0, 1]) for 1 < p < g < co. This is because the embedding
is proper since g(x) = X7 with p <r < qisin L? but not in L1. By the inverse mapping theorem, the
image is of first category.

Example 4 (The characteristic variety of a linear PDO). If for any u € C"™(Q), such that P(D)u = 0,
we have u € C"™(Q), then an essential condition for this to hold is that the characteristic variety of P,
defined as

L={eC": P =0} &)

4



satisfies limy e ges [IM E| = 00, A consequence of this fact is that, for Schrodinger equation, there exists
C? solution which is not C°.

Proof. Consider two Fréchet spaces F := {u € C"*'(Q) : P(D)u = 0} and F; := {u € C"(Q) : P(D)u =
0}. (C™ space are Fréchet with the family of seminorms ||ullx = 334)<m SUP ek 107u(x)| for K cC Q). This
is an embedding. But we also hypothesize that this is a surjective, thus the inverse map is continuous.
That is

Z sup [0“u(x)| < Z sup |6Bu(x)

1 xeK Br<m xeK’

,NueF, =F,. (6)

|| <m+

We take the characteristic function u(x) = €~ with & € . Then P(D)u = P(£)e** = 0. Plugging
in we get 2218 < qup g e MET) < oMl for any ¢ € X, where Ay({) = Y IC°]. Since

limy = oo, we must have limy_,e gex Im & = oo. O

A
—o0.fEX An(é)

Theorem 2.3 (Closed graph theorem). T : D(T) — F, linear (can be unbounded a priori) and has
closed graph (D(T) C F,, F, F, Banach or Fréchet spaces). Then either D(T) is of first category in Fj,
or D(TYF,; = Fy and T is bounded.

Proof. Consider the continuous projectors m; and m,. Since G(T') is closed, m|g 1s also continous
and Imm gy = O(T). It O(T) is not of Ist cat., then O(T) = F,. In the latter case the inverse
[m1lga] ™ : Fi = G(T) is bounded. Thus T = m; o [mr|g]™" is also bounded. O

Theorem 2.4 (Banach-Steinhaus uniform boundedness principle). F Fréchet, V LCVS, ® a family of
linear conti. operators F — V. Define the set of pts whose orbits under ® are bounded: ¥ = {x € F :
®x is bounded in V}. Then either X is of 1st cat., or £ = F and © is equi-continuous.

Proof. Fixed arbitrary balanced nbhd U of O in V. We write £ = | J,»; nA(U), where A(U) is the intersec-
tion of the preimages of U in V under all maps 7" in @ (by the definition of boundedness). If X is not of 1st
cat., then there exists some #z such that nA(U) contains a balanced nbhd W of O in F,i.e. T(W)Cc U. 0O

Example 5 (Divergence of Fourier series). There exists a continuous function on the circle whose Fourier
series diverges at a point. Since we can choose f such that

~ O(log N), (7

| =

N
ISxSON 2 Lullflles Ly =Dyl 2 Y
k=1

where Dy is the Dirichlet kernel. Then the operators Ty : C(T) — C defined by Tnf := Snf(0) is not
equi-continuous, thus there must be some ¢ € C(T) such that sup, |S n¢(0)| = oo.

3 Fredholm Theory

Theorem 3.1 (Algebraic Fredholm theory). Let T : Vi — V, such that dimkerT = n, < oo and
dimcokerT = n_ < oo. Then there exists R_ : K- — V, injective and R, : V| — K" surjective such that

the operator
( T R

R, 0):V1®K”-—>V2@K”+ (1)

is an isomorphism.



Remark 3. Briefly, we can always “complete” a Fredholm operator to an isomorphism by adding finite-
dimensional spaces.

Proof. The proof is based on construction.

e We take the basis {x;,---,x,,} of kerT, by Hahn-Banach there exists a “dual basis” of linear
functionals on Vi, {x},---,x, } such that (x],x;) = 6;;. We define R, : V; —» K" asu
((x1,u), -+ ,{x, ,up). This is surjective by construction. Moreover, ker 7' N ker R, = {0}.

e We take the basis {[y;], -, [v. ]} of cokerT = V,/ImT. We define R_ : K"~ — V, as R_(e;) = y;,
where {e;} is the standard basis of K"-. This is injective by construction. Moreover, I Im7T NImR_ =

{0}.

u
— c n- oy
e We check T := TR is (1) surjective since T ,1 = (Tut iy e , and R, is surjective.
R, O : R,u
Cn_

(2) injective since T(uu ) =0iff Tu+R_u_ =0and R,u = 0. Note that Tu € ImT NnImR_ = {0},

and thus Tu = R_u_ = 0. Since R_ is injective, we have u_ = 0 and thus u € ker T N ker R, = {0},
thus u = 0.

O

N ~ (T R E E_
Proposition 1 (Schur complement formula). 7' = (R+ 0 E, E_,

dimker T = dimker E_,, dim cokerT = dim cokerE_.. In particular, T™" exists iff E_, is invertible, and
in this case

) is invertible with T~ = ( ) Then
T'=E-EEE,. 2)
Note that in this case IndT = dimker T — dim cokerT = 0. Therefore E_, is a n. X ny matrix (n, = n_).

Theorem 3.2. T : By — B, Fredholm operator between Banach spaces, S : By — B, continuous with
[IS]] < 1, then

o T + S isalso Fredholm,
o Ind(T + ) = Ind(T),
e dimker(7T + §) < dimker T, dim coker(7 + §) < dim cokerT.

o 9

Proof. ||S|| < 1 implies that

< 1. Thus T + (f) 8) is also invertible. Denote its inverse as

S S
(gs Z?S_ ) Thus dimker(7 +S) = dimker ES, < n,, dim coker(T +S) = dim cokerE®, < n_, thus T +S
+ —+
is Fredholm with Ind(T + S) = n, —n_ = IndT. m|

Followings are some basic facts about compact operators:

Proposition 2. e [L.(By,By) C L(By,By) is a closed two-sided ideal.



o [fT is semi-Fredholm i.e. dimker T < oo and ImT is closed, K is a compact operator, then T + K
is also semi-Fredholm with Ind(T + K) = IndT.

Theorem 3.3 (Atkinson characterization of Fredholm operators). T : By — B, bounded linear operator
between Banach spaces, then TFAE:

T is Fredholm,

e 1F : B, — By, suchthat TE = I + Ry, ET = I + R, with Ry, R, finite rank operators,

dE : B, —» By, suchthat TE = I + K,, ET = I + K, with K, K, compact operators.

e 1F, : B, —» Byand E; : B, — By such that TE, = I + K, E;T = I + K, with K,, K, compact
operators.

Remark 4. Briefly, Fredholm operators are invertible up to compact perturbations.

Proof. (1) = (2) By algebraic Fredholm theory,
T RNE E\ (TE+R.E * \ (I O 3)
R, ON\E, E_,| ¢ R.E.] \0 I

(E E_)(T R_)_(ET+E_R+ * )_(1 0) @
E., E.J\R, 0 x ER]) " \o 1)
Thus reading the first row/column we get the desired result with Ry = R_E_ and R, = E_R,, both finite
rank.

(2) = (3) and (3) = (4) are trivial.

4) = () TE, =1+ K, thusIm7T D Im(/ + K;), which implies codimIm 7 < oo (since I + K is

Fredholm with index 0, because K is compact). Similarly, E,T = [ + K, implies dimker T < co. Thus T
is Fredholm. |

Example 6 (Application: Toeplitz operators). H, = {f € L* : f(x) = Y50 ane™} the Hardy space on the
circle. Let f € C(T) and f(€) = 3.,z fue™ be its Fourier series. The Toeplitz operator T;:H, - H,
is defined as Tyu = P(fu) where P is a projection from L* to H, (view as a strip-like matrix acting on €*
the Fourier coefficients). Then T is Fredholm with

1 21 f/(eie)
iy Fen

1 .
IndT; = —winding number of f around 0 = —2—ﬂ[arg f(ele)]zio = 5)

Here |f| >0 onT.

Proof. We have f,g € C(T) implies T/T, — Ty, € L.(H>). This is because for p, g being trigonometric
polynomials we have by suitable cutoffs that 7,7, — T, is of finite rank. Thus by the fact that L is
compact and that ||Tf|| = ||f]l., and that trigonometric polynomials are dense in C(T), we get the desired
result. Now if f is nowhere vanishing, then there exists g € C(T) such that fg = 1. Thus /T, = I + K,
T,Ty = I + K, with K;, K, compact. By Atkinson’s theorem, T is Fredholm. We compute that Ind7,,
which is a translation operator is —n. Thus Ind7, = —winding number of e, around 0. Now it remains to
show that for f with zero argument variation, Ind7; = 0. In such case we write f = e with F € C(T)
continuous. Note that index is stable on a homotopy we have IndT; = IndTemltl:0 = IndT, = 0. i



Theorem 3.4 (Riesz). Suppose S € L.(B), Ny := ker(I + S)*, then there exists some J such that N =
Usso Nk = ker(I + S)’. Moreover, for the same J, F = (50 F; = Im(I + S)’ with F; = Im(I + S)/, and
we have the topological direct sum decomposition B = N & F, both N and F are invariant under S, and
(I + S)|F is invertible.

Proof. 1If the ascending chain N, never stabilizes, then by the proof of “identity is compact iff finite
dimensional” we can find x; € N, such that ||[x — x| > 1 for any x € N,_; and ||x| = 1. Let x =
(I +S8)x; —Sx; (j £ k—1), then since N;_; is S -invariant, we have that x € N,_; and thus ||x — x| =
||S (xp — xj)” > 1. This means that {S x;} has no Cauchy subsequence, contradicting the compactness of
S. Thus N stabilizes at some J. Similarly for F; by the fact that dimker(/ + S)"*' = dimker(I + S)’
implies dim coker( + S)’*! = dimcoker(/ + S)’ implies Im(I + S)’*! = Im(I + S)’. (Note that S is
compact and thus 7 + S is Fredholm with index Ind(/ + S') = Ind(/) = 0.)

Now N is a finite union of finite dimensional spaces, thus is finite dimensional (or directly note that
(I +8)’ = I + compact is Fredholm), and F is closed, thus this direct sum is topological. O

Theorem 3.5 (Analytical Fredholm theory). We assume that Q 5 7 — A(z) is a meromorphic family of
Fredholm operators on B, such that A(zy)~" exists for some 7. Then Q > z — A(z)~" is meromorphic with
values in L(B), with poles of finite rank.

Proof. Since Ind(A(zp)) = 0 and index is stable under continuous perturbations, we have Ind(A(w)) = 0
A(w) RY

for any w € Q (Q is a connected open set). Thus the Grushin opeartor ( R O_) is invertible. In a
+

A(z) RY

RY O

(* = NONE, —, +, —+) are also holomorphic. Thus by Schur complement formula, we have

neighborhood of w, 7 = ( is still invertible. Since z — A(z) is holomorphic, we have z — EY(z)

A@™ = E"(2) - EX((EX,(2)) ' EY(2). (6)

By finite-dimensional argument, since det E", (z) is holomorphic and non-vanishing at z = w,
EY(2)(E",(2))"'E¥(z) is meromorphic with poles of finite rank at z = w. Together with the holomorphy
of E"(z), we get the desired result. O

Example 7 (Application: Riesz projectors). P : X; — X, is continuous inclusion, then by analytic

Fredholm theory,

IT (P -z
+ e + -

— -1 - —
P=zD -2 (z—z)V

+ Ro(2) (7

where 7z, is a pole, z — Ry(2) is holomorphic, and 11 : X, — ker(P — z;1)N is the Riesz projector onto the
generalized eigenspace of P at z,. We can recover the Atkinson result by noting N = 11X,, F = (I -IDX.

Proof. WLOG z; = 0, applying analytic Fredholm theory to P — zI, we have

A A A
(P-zD)' ==+ =+ + = + Ro(2), (8)

Z Z Z

1 -1
M:=-A = —— (P -z 'dz, 9)
27Tl lzl=€
2 1 -1 -1 1 -1
n’=-— (P—zD) ' (P —wD) 'dzdw = —— (P -z 'dz =11, (10)
Ar ld=e Jwi=e 21 =€



applying (P — z) on both sides and matching the terms, we get PA_y = 0 and PA_; = A_;_1(k < N), and
[+(P-2)Rz)=1= (P-2)R(x)=1-11= (P-z)({-IDR(z) = I-11 = PR(O)U -II) = I-11, (11)

therefore Plyy—m) 1s invertible, and
N =ImIl =kerP", F =Im(-1I)=ImP". (12)

We recover the Atkinson decomposition X; = N @ F. O

4 Duality

First we give the two main results for dual operators.
Theorem 4.1. T € L(B;, B,), Im T closed, then ImT" is also closed and
o (kerT) =ImT* kerT* = (ImT)°,
e dimker 7T = dim cokerT”, dim cokerT = dimker T,
o [n particular, if T is Fredholm, then so is T* with IndT* = —IndT.
The proof is based on the following algebraic result:
Theorem 4.2. W C B is closed, define
B > W, lye=0, (") :B/W° — W"isan isometric isomorphism. (1)
q (B/W) — B, q"(B/W))=W°, ¢ :(B/W)" — W°isan isometric isomorphism.  (2)

Proof. o ([*¢ = €|y since ¢ is an embedding. Thus ¢*¢ = 0, if and only if ¢ € W°. For any n € W*, by
HB 3¢ € B* such that &|y = n and ||€]| = ||nl]. Thus ||c*&]| = [Inl] = |I[€]w-|l. Thus (¢*)" is an isometric
isomorphism.

e For any { € (B/W)*, we consider

X, q°0) = {qx, ) =[xlw, O (3)

Thus g*¢ : x = {[x]w, {), therefore g*{ € W° because [x]y = [0]y for x € W. We take any & € W°,

& B/W — Kis well-defined since &|y = 0. Moreover, [|£'|| = ||€]|. Therefore ¢* is an isometric
isomorphism.

O

Proof of the theorem. 1f T is bijective, then there exists S such that ST = Ip,, T*S* = Ip., S*T" = Ip;,
thus all the results hold trivially.
If T is not bijective, define

T,:B, - By/kerT, T,:Bj/kerT »>ImT, T;:ImT — B,, @
then T is surjective, T is bijective, T3 is injective. T = T30 To o Ty, thus T* = T{ o T} o T7.

T :(By/kerT)" - By, T;:B;— (ImT)". (5)

9



Since (B;/kerT)" = (ker T')°, thus Im 7 = (ker 7)°. Since (Im7)" = B;/(ImT)°, thus ker 7; = (Im T)°.

T surjective = T injective, T3 injective = T7 surjective. T, bijective = T bijective. Thus
we have

ImT* =Im(T;T57;) =ImT; = (kerT)°, (6)

ker T* = ker(T,T,T5) =kerT; = ImT)". (7)

For the dimensional relations, we just note that the dimension of a subspace equals to its dual space, thus

dimker T = dim(ker T')" = dim(B;/(ker T)°) = dim(B;/Im T™) = dim cokerT", (8)
dim cokerT = dim(cokerT)" = dim(B/ImT)* = dim(Im 7)° = dimker T". 9)
O

Theorem 4.3. If T € £.(B, B,), then T* € L.(B, B)).

Proof. We need to show that for &, € B}, T, has a convergent subsequence. We define K = {T'x :
Ixlls, < 1} cc B,. Note that {¢,} is in C(K) and |¢;y] < [|&|Ilvll = Ivll. Therefore by Arzela-Ascoli

theorem, there exists a convergent subsequence &, — ¢ in C(K). By passing to a subsequence we
assume that &; is convergent in C(K), thus

T -T&|, < sup (T'E-&).0]= sup &-&.T0<|é-&q 0 (10

XEBy,|lxl|<1 X€By,|lxl|<1

O
Theorem 4.4 (Banach-Alaoglu). U is the closed unit ball in B*, then U is compact in the weak-* topology.

Proof. Only prove for the case B is separable. Let {x,} be a dense subset of B. We consider the seminorms

pa(&) = K&, x)l, &€ B (11)

We claim that the topology generated by these seminorms is exactly the weak-* topology on B*. By the
following lemma, indeed, enough to show that for any given x, & > 0, there exists some j, 6 > 0 such that
{&: Kx, &) < &} D {¢ 1 [(x;,8)| < 6}. We find x; such that ||x — x/|| < £ and take 6 = £, we have

(O < - xfigl+6<p+6<e. (12)

Thus we only need to show that & € U has a subsequence such that (x;, &, ) converges for any j. By
diagonal argument, we can find such subsequence. O

Example 8. {f,} a bounded sequence in L. By Banach Alaoglu, there exists a subsequence {f, } and

some f € L1 such that for any g € L? (1—17 + 41; = 1), we have

ff,,kgdxeffgdx. (13)

Lemma 1. L : F — K is continuous linear functional with respect to the topology o(F,G) (geneerated
by the huge number of seminorms x — |(x, y)| for each fixed y € G, and y — {x,y) is linear for each fixed
x € F). Then Ay € G such that L(x) = {x,y) for any x € F. In particular, if &, — &, converges to O in
weak-x*, then there exists some & € B* such that &, converges to & in weak-+.
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Proof. Since L is continuous, there exists some finite number of seminorms and C > 0 such that

N
IL(x)| < CZ [xyp, VxeF (14)
j=1
We define N ={x€ F :(x,y;)=0,j=1,--- ,N}, then L|y = 0, F/N is finite dimensional. We define L’
and Y; on F/N as
L'([x]) = L(x),  Y;([x]) = {x,y;). (15)

Then they are all well-defined. Note that

dim Span(Yy,--- ,Yy) < N = dim(F/N)* — dim[Span(Yy, - - - , Yy)]° = dim(F/N) — dim{[0]} = dim(F/N),

(16)
thus we have F/N = Span(Yi,--- , Yy). Therefore there exists c; such that L = Z?’zl c¢;Y;. Thus for any
x € F, we have

N N N
L) = L(xD) = ) e¥i([xD) = D ek y)) = (x> ey (17

J=1 J=1 J=1
We take y = Z?]:l c¢jyj € G, and we are done. i

Corollary 2. M C B*, then M is closed in weak-+ iff M N U is closed in weak-x.

Corollary 3. If ImT" is closed, then Im T is also closed.

S5 Spectral Theorem for Self-Adjoint Operators

Example 9. Tu = %u’ onH=L*0,1). If D, = C>(0,1), then T is symmetric (since no boundary terms).
IfD, ={uel?:u €L* (W isthe weak derivative), then T is not symmetric.

Definition 5.1. T densely defined, we say that u € Dy- if v = (u, Av) is continuous on Dy with respect
to the norm of H. In such case, since D, is dense in H, the continuous linear functional uniquely extends
to H and thus by Riesz representation theorem there exists a unique f € H such that {u,Av) = (f,v) for
any v € Dy. We define A*u = f.

Proposition 3. A closed and symmetric, then for any z € C\ R, we have
e ker(A —zl) = {0},
e Im(A — zl) is closed,
o [Imzlllull < [|(A — zDul| for any u € Da.
Proof. We only need to prove the last item, since the first two follow directly. We compute

1A = 2ull® = 11Bul® + (Im 2)?Jul|* > (Im 2)*Jud. ey

11



Proposition 4. A symmetric and densely defined, then define
n, = dimker(A* + i) = dim coker(A F 1). (2)

We have that codimIm(A — z) = dimker(A* — ) is constant on {Imz > 0} and {Imz < 0} respectively,
equal to n, and n_. (They are called the deficiency indices of A.)

Proof. We first directly verify that ker(A*—7) = [Im(A—z)]* by the density of D4. Thus codim Im(A-z) =
dim coker(A* — 7). Now we want to apply the Fredholm theory argument but cannot directly do this for
unbdd operators. Thus we consider the graph operators:

T:GA)> w,Au)— (A-2)u € H, 3)

S :G6(A) > u,Au) —» —{u € H. 4)

For Imz > 0 and |{| < 1, note that ker(A — z) = 0 and Im(A — z) is closed (z ¢ R), we have kerT = 0
and Im 7 is closed (semi-Fredholm). By the Fredholm theory we have Ind(T + S) = Ind(T') for { small
enough. That is, Ind7" = —codim(Im(A — z)) = —codim(Im(A — z — £)). Thus codim Im(A — z) is constant
for Im z > 0. Similarly for Imz < 0. O

Proposition S. A is self-adjoint iff n, = n_ = 0.

Proof. If A is self-adjoint, then n. = dimker(A* +1) = dimker(A 1) = 0, since +i ¢ R and the fact that A
is closed and symmetric (self-adjointness implies closedness, since an adjoint opeartor is always closed).
If u e Dy and Imz > 0, since n, = 0, we have Im(A — z) = H, thus v € Dy, (A —2)v = (A* — 2)u, since
A is symmetric, we have (A* —z)(u —v) = 0,by n_ = 0 we have u = v € D,. O

Theorem 5.2 (Kato). Suppose A is s.a. with domain Dy, and V is symmetric with Dy D Dy. If there
exists 0 < a < 1, b > 0 such that for any u € D,, ||Vul|| < allAul| + bl|ul|, then A + V with domain D, is
also s.a.

Proof. By the assumption graph norms of A and the norm of A + ¢V (0 < ¢ < 1) are equivalent. We WTS
n.(t) := codim(A + ¢tV +i). Once we have this, then n.(0) = 0 implies n.(1) = 0, thus A + V is s.a. We
consider the graph operators:

T:GA+tV+i)—=H, Twu,(A+tVEiu)=A+1V<Eiu, 5)

S:GA+tV+i)—H, SuA+tV+iu=2ou, |0 <1 (6)

Im T closed, ker T = {0}, ||S|| < 1. By Fredholm, Im(7" +5S) is closed, ker(7 +S) = {0}, and codim Im(T +
S)=—-Ind(T +S§) = —IndT = codimIm 7. Thus n_,(¢) is constant in .
O

Example 10. H = H, + )/|x|_1 on ’(R®), Hy = A, ¥y € R, Dy, = {u € L? : Au € [*} is s.a. with
DH = DHO-

Proof. We prove the following estimate:

eul
f < ol + %

then use Kato’s theorem to conclude. O
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Remark 5. Remark of history: Kato also proved the many-body version of this theorem.

Theorem 5.3 (Cayley transform). If A is symmetric, densely defined, then T : (A + )u — (A — 1)u with
Dr = (A +1)Dy, is isometric, Im(I — T) is dense, ker(I — T) = {0} and D, = (I — T)Dr.

Conversely, if T is isometric with Im(I — T) dense and ker(I —T) = {0}, then A : I -T)v = i(I+T)v
with Dy = (I — T)Dr is symmetric and densely defined.

Corollary 4. Suppose A is symmetric and densely defined and closed, then A has a s.a. extension iff
ny=n..

Proof. By Cayley transfrom, A has a s.a. extension iff 7 has a unitary extension. This iff
codimPD7 = codimIm 7. (®)
Since Dr = Im(A +1), ImT = Imi(A + I) = Im(A — i), we have the desired result. O

Theorem 5.4 (Spectral theorem I). There exists a unique operator-valued mapping f — f(H) € L(H)
for any s.a. operator H on a Hilbert space H and f € C(R) such that

e (f9)(H) = f(H)g(H),
o f(H)" = f(H),
o The functional calculus of r,(z) = (w — 2)! is the resolvent, i.e. r,(H) = (H —wI)™!,

o [fsuppf is away from o(H), then f(H) = 0,

Definition 5.5. We say that L C H closed subspace is invariant under H, if (H—z)~'v € L for any v € H
andz€ C\R.

Lemma 2. H is separable, then AL; C H cyclic subspaces (i.e. du; € L; such that
L; = Span{(H — 2)"'u; : z ¢ R}) such that H = @/.Lj and L; 1 Ly for j # k.

Theorem 5.6 (Spectral theorem II). H is s.a. on H, S = o(H) C R, then there exists a u finite measure
on S x N, and a unitary operator U : H — L*(S x N, du) such that

e I[fh:S XN — R is the function:
h(A,n) = 4, )

(i.e. the multiplication by A on copies indexed by n), then & € Dy iff hWU(&) € L*(S x N, du), and
for such & we have the diagonalization

UHU™'¢ = ke, (10)
forany € U(Dp).

o We have the functional calculus

UFHU™'¢ = f(h). (11

In the case where we have a cyclic vector, i.e.

H = Span{(z— H)"'v:ze C\R} (12)

Then the spectral theorem II can be simplified as follows:
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Theorem 5.7 (Spectral theorem II'). Ju a finite measure on S, U : H — L*(S, du) unitary such that
o £€ Dy iff hUE) € L3(S,du), h is the multiplication by X on S, and

e we have the diagonalization
UHU ' = ke, (13)

forany ¢ € U(Dpy).

e we have the functional calculus.
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