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1 Hahn-Banach Theorem
Theorem 1.1 (Geometric Hahn-Banach for convex sets). V vector space over K = R. Suppose A is
convex and linearly open. W (affined) subspace of V, with A ∩W = ∅, then ∃ a(n) (affined) hyperplane
H containing W and disjoint from A.

Remark 1. • We say A ⊂ V is convex, if {t ∈ R : x + ty ∈ A} is an interval in R for any x, y ∈ V, or
equivalently, for any x, y ∈ A and 0 < λ < 1, we have λx + (1 − λ)y ∈ A.

• We say that A ⊂ V is linearly open, if it is convex and for any x, y ∈ A, {t : x + ty ∈ A} is an open
interval in R.

Theorem 1.2 (Hahn-Banach Theorem for topological vector spaces). V topological vector space over
K = R or C. Suppose A ⊂ V is convex and open, and W is a(n) (affined) subspace with A ∩W = ∅, then
∃ a(n) (affined) closed hyperplane H containing W and disjoint from A.

Proof. (Sketch) A open implies A linearly open. Applying Theorem 1.1 there exists a hyperplane H
containing W and disjoint from A. Since V \A is closed, we have H ⊂ V \A. codimH ≤ 1 and H is not V ,
thus H is also a hyperplane. For K = C, we first view V as over R and find H1 closed and codimRH1 = 1.
Then consider H = H1 ∩ (iH1). Then H is closed, a C-subspace, and has codimension 2 over R thus
codimension 1 over C.

□
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Theorem 1.3 (Hahn-Banach for LCTVS, closed version). V a locally convex topological vector space,
B closed convex. x < B. Then there exists a continuous linear functional f : V → K such that { f (x) =
f (y)} ∩ B = ∅. Or analytically,

inf
y∈B
| f (x) − f (y)| > 0. (1)

Proof. The strategy is recasting it to the open version. Find a balanced nbhd N of 0 such that (x+N)∩B =
∅ and x < A := B + N. By the open version there exists closed H containing x and disjoint from A. This
means f (x + z1) , f (y + z2) for any y ∈ B, z1, z2 ∈ N, thus f (N) , {0} but f (N) is balanced around 0 in K
thus infy∈B | f (x) − f (y)| > 0. □

Corollary 1. Same setting as above. Suppose W ⊂ V a subspace, then W can be characterized as

W =
⋂

f continuous linear functional
f |W=0

ker f =
⋂

H closed hyperplane
H⊃W

H. (2)

Proof. If x ∈ W, ker f ⊃ W and by closedness we know that ker f ⊃ W and we know that x in the
intersection. Conversely, if x < W, we want to find f continuous such that f |W = 0 but f (x) , 0. This
can be done by finding f such that f (x) , f (y) for any y ∈ W (W closed and convex and away from x).
If f (y) , 0, then f (x) , f ( f (x)/ f (y) · y) = f (x), which is a contradiction. □

Example 1 (Runge’s approximation). Let K ⊂ C compact, suppose C\K is connected. Then any function
holomorphic in a neighborhood of K can be approximated uniformly on K by polynomials.

Proof. We recall the Riesz representation of C(K)∗: for any linear functional L on C(K) we can write it
as

L( f ) =
∫

K
f (z)dµ(z) (3)

with some complex finite Borel measure µ supported on K. Now using the characterization of the closure
of subspace, the closure of W with W the space of polynomials in C(K) is

W =
⋂

L∈C(K)∗
L|W=0

ker L. (4)

Thus to show that any holomorphic f on nbhd(K) is in W, we only need to show that for any µ with∫
K

zndµ(z) = 0,∀n ≥ 0, (5)

we have ∫
K

f (z)dµ(z) = 0. (6)

This is done by the integral formula∫
K

f (z)dµ(z) = −
1

2πi

∫ "
1
ζ − z

∂φ(ζ) f (ζ)dµ(z)dζ ∧ dζ, (7)

and using the Taylor expansion and the moment condition to show that the integral is 0. □
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Theorem 1.4 (Hahn-Banach for extension of functionals). Let V be a vector space (no topology at first).
p : V → R≥0 seminorm, W ⊂ V subspace, f : W → K linear functional with

| f (w)| ≤ p(w),∀w ∈ W. (8)

That is, f is a continuous linear functional on the locally convex TVS defined by the seminorm p. Then
there exists an extension f̃ : V → K of f to the whole V such that f̃ is also a continuous linear functional
with p, i.e. ∣∣∣∣ f̃ (v)

∣∣∣∣ ≤ p(v),∀v ∈ V. (9)

and f̃ |W = f .

Proof. In the following discussion we view V as a LCTVS with the seminorm p. Define the convex open
set A = {v ∈ V : p(v) < 1} as well as the affined subspace F = {v ∈ W : f (v) = 1}. Then by p ≤ f we
know that A ∩ F = ∅. By geometry Hahn-Banach (open ver.) there exists a closed affined hyperplane
H = {x : f̃ (x) = 1} containing F and disjoint from A. Since H ⊃ F, we have for f̃ (x) = 1 for x ∈ F, thus
f̃ |W = f . Also, we can write

∣∣∣∣ f̃ (x)
∣∣∣∣ = ∣∣∣∣ f̃ (x)

∣∣∣∣ · ∣∣∣∣ f̃ (x/ f̃ (x))
∣∣∣∣. Since x/ f̃ (x) is in H by definition, we have that

p
(
x/ f̃ (x)

)
≥ 1, thus

∣∣∣∣ f̃ (x)
∣∣∣∣ ≤ ∣∣∣∣ f̃ (x)

∣∣∣∣p(x/ f̃ (x)) = p(x). □

Example 2 (Existence of weak solution to linear PDEs in the Segal-Bergmann space). V = L2(Rn, e−|x|
2/2dx),

the Segal-Bergmann space. Consider the differential operator with constant coefficients P(D) where P is
a polynomial and D = 1

i ∂. We want to solve the equation P(D)u = f for given f ∈ V, i.e. we want to find
u ∈ V such that the equation holds in the weak sense:∫

uQ(D)v =
∫

f v,∀v ∈ C∞c (Rn). (10)

Here, Q(D) = P(−D) is the formal adjoint of P(D).
To do this, we consider the subspace W = {Q(D)v : v ∈ C∞c (Rn)} of the space U = L2(Rn, e|x|

2/2dx).
We define a linear functional L : W → C by

L(Q(D)v) =
∫

f v. (11)

We show:

•
∫
| f v|2 ≤

∫
|v|2e|x|

2 ∫
| f |2e−|x|

2
≲

∫
|Q(D)v|2e|x|

2/2, thus L is well-defined and bounded.

• By Hahn-Banach, we can extend L to a bounded linear functional L̃ : U → C. By Riesz represen-
tation on L2, there exists u ∈ V such that L̃(g) =

∫
ug for any g ∈ U. Restrict it back to W, we

get ∫
uQ(D)v = L̃(Q(D)v) = L(Q(D)v) =

∫
f v, ∀v ∈ C∞c (Rn), (12)

which is exactly the weak solution we want.
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2 “Great” Theorems in Functional Analysis
Theorem 2.1 (Baire). (E, d) complete metric space. {Un}n≥1 collection of open dense subsets of E. Then⋂

n≥1 Un is dense in E. Equivalently, if {Fn}n≥1 is a collection of closed subsets of E with empty interior,
then

⋃
n≥1 Fn has empty interior.

Remark 2. We say that the union of closed sets with empty interiors is a set of first category.

Theorem 2.2 (Banach inverse mapping theorem). T : F1 → F2 in an injective bounded linear operator
between Banach (or Fréchet) spaces. We have the following dichotomy: Im T is either of first category
in F2, or Im T = F2 and T has a bounded inverse.

Another version is: T is a bounded linear operator (not necessarily injective) between Banach (or
Fréchet) spaces. Then Im T is either of first category in F2, or Im T = F2. This can be shown by applying
the first version to the induced map T̃ : F1/ ker T → F2.

Proof. The proof is based on Baire’s theorem. Suppose that Im T is not of first category. For fixed r > 0,
denote

U = B1(0, r) = {x ∈ F1 : ∥x∥ ≤ r}. (1)

Then F1 =
⋃

n≥1 nU. Thus
Im T = T (F1) ⊂

⋃
n≥1

T (nU) =
⋃
n≥1

nT (U). (2)

Note that this is a union of closed sets. Since we assumed that T is not of 1st cat., there exists some n such
that there exists an open ball in F2 contained in nT (U). By scaling, symmetry and convexity arguments,
there exists some ρ > 0 such that B2(0, ρ) ⊂ T (U). Now we denote Uk := 2−kU, then there exists ρk > 0
such that B2(0, ρk) ⊂ T (Uk). Thus we have the estimate ρk ≤ ∥T∥2−kr. Denote Vk = B2(0, ρk). We
are in a position to show that T has a bounded inverse. For any y ∈ V1, there exists x1 ∈ U1 such that
∥y − T x1∥ ≤ ρ2, that is, there exists y1 ∈ V2 such that y − T x1 = y1. Repeating this process we get a
sequence {xk}k≥1 with xk ∈ Uk such that

y − T

 N∑
k=1

xk

 = yN ∈ VN+1. (3)

Since {
∑N

k=1 xk}N≥1 is a Cauchy sequence in F1, it converges to some x ∈ F1. Taking limit on both sides
we get T x = y. Also, we have the estimate

∥x∥ ≤
∞∑

k=1

∥xk∥ ≤

∞∑
k=1

2−kr = r. (4)

Since y ∈ V1 is arbitrary, we have shown that for any y ∈ B2(0, ρ1), there exists x ∈ F1 with ∥x∥ ≤ r such
that T x = y. Thus the inverse is bounded by

∥∥∥T−1
∥∥∥ ≤ r/ρ1. □

Example 3. Lq([0, 1]) is of first category in Lp([0, 1]) for 1 ≤ p < q ≤ ∞. This is because the embedding
is proper since g(x) = x−

1
r with p < r ≤ q is in Lp but not in Lq. By the inverse mapping theorem, the

image is of first category.

Example 4 (The characteristic variety of a linear PDO). If for any u ∈ Cm(Ω), such that P(D)u = 0,
we have u ∈ Cm+1(Ω), then an essential condition for this to hold is that the characteristic variety of P,
defined as

Σ = {ξ ∈ Cn : P(ξ) = 0}, (5)
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satisfies lim|ξ|→∞,ξ∈Σ |Im ξ| = ∞. A consequence of this fact is that, for Schrödinger equation, there exists
C2 solution which is not C3.

Proof. Consider two Fréchet spaces F1 := {u ∈ Cm+1(Ω) : P(D)u = 0} and F2 := {u ∈ Cm(Ω) : P(D)u =
0}. (Cm space are Fréchet with the family of seminorms ∥u∥K =

∑
|α|≤m supx∈K |∂

αu(x)| for K ⊂⊂ Ω). This
is an embedding. But we also hypothesize that this is a surjective, thus the inverse map is continuous.
That is ∑

|α|≤m+1

sup
x∈K
|∂αu(x)| ≲

∑
|β|≤m

sup
x∈K′

∣∣∣∂βu(x)
∣∣∣,∀u ∈ F1 = F2. (6)

We take the characteristic function u(x) = eiξ·x with ξ ∈ Σ. Then P(D)u = P(ξ)eiξ·x = 0. Plugging
in we get Am+1(ζ)

Am(ζ) ≲ supx∈K,x′∈K′ e
− Im⟨ζ,x−x′⟩ ≲ e|Im ζ | for any ζ ∈ Σ, where Ak(ζ) =

∑
|α|≤k |ζ

α|. Since
lim|ξ|→∞,ξ∈Σ

Am+1(ξ)
Am(ξ) = ∞, we must have lim|ξ|→∞,ξ∈Σ |Im ξ| = ∞. □

Theorem 2.3 (Closed graph theorem). T : D(T ) → F2 linear (can be unbounded a priori) and has
closed graph (D(T ) ⊂ F1, F1, F2 Banach or Fréchet spaces). Then eitherD(T ) is of first category in F1,
orD(T )F1 = F1 and T is bounded.

Proof. Consider the continuous projectors π1 and π2. Since G(T ) is closed, π1|G(T ) is also continous
and Im π1|G(T ) = D(T ). If D(T ) is not of 1st cat., then D(T ) = F1. In the latter case the inverse
[π1|G(T )]−1 : F1 → G(T ) is bounded. Thus T = π2 ◦ [π1|G(T )]−1 is also bounded. □

Theorem 2.4 (Banach-Steinhaus uniform boundedness principle). F Fréchet, V LCVS, Φ a family of
linear conti. operators F → V. Define the set of pts whose orbits under Φ are bounded: Σ = {x ∈ F :
Φx is bounded in V}. Then either Σ is of 1st cat., or Σ = F and Φ is equi-continuous.

Proof. Fixed arbitrary balanced nbhd U of 0 in V . We write Σ =
⋃

n≥1 nA(U), where A(U) is the intersec-
tion of the preimages of U in V under all maps T inΦ (by the definition of boundedness). If Σ is not of 1st
cat., then there exists some n such that nA(U) contains a balanced nbhd W of 0 in F, i.e. T (W) ⊂ U. □

Example 5 (Divergence of Fourier series). There exists a continuous function on the circle whose Fourier
series diverges at a point. Since we can choose f such that

|S N f (0)| ≳ LN∥ f ∥∞, LN = ∥DN∥1 ≳
N∑

k=1

1
k
∼ O(log N), (7)

where DN is the Dirichlet kernel. Then the operators TN : C(T) → C defined by TN f := S N f (0) is not
equi-continuous, thus there must be some φ ∈ C(T) such that supN |S Nφ(0)| = ∞.

3 Fredholm Theory
Theorem 3.1 (Algebraic Fredholm theory). Let T : V1 → V2 such that dim ker T = n+ < ∞ and
dim cokerT = n− < ∞. Then there exists R− : Kn− → V2 injective and R+ : V1 → K

n+ surjective such that
the operator (

T R−
R+ 0

)
: V1 ⊕ K

n− → V2 ⊕ K
n+ (1)

is an isomorphism.
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Remark 3. Briefly, we can always “complete” a Fredholm operator to an isomorphism by adding finite-
dimensional spaces.

Proof. The proof is based on construction.

• We take the basis {x1, · · · , xn+} of ker T , by Hahn-Banach there exists a “dual basis” of linear
functionals on V1, {x∗1, · · · , x

∗
n+} such that ⟨x∗i , x j⟩ = δi j. We define R+ : V1 → Kn+ as u 7→

(⟨x∗1, u⟩, · · · , ⟨x
∗
n+ , u⟩). This is surjective by construction. Moreover, ker T ∩ ker R+ = {0}.

• We take the basis {[y1], · · · , [yn−]} of cokerT = V2/ Im T . We define R− : Kn− → V2 as R−(ei) = yi,
where {ei} is the standard basis of Kn− . This is injective by construction. Moreover, Im T ∩ Im R− =
{0}.

• We check T̃ :=
(

T R−
R+ 0

)
is (1) surjective since T̃


u
c1
...

cn−


 =

(
Tu +

∑n−
i=1 ciyi

R+u

)
, and R+ is surjective.

(2) injective since T̃
(

u
u−

)
= 0 iff Tu + R−u− = 0 and R+u = 0. Note that Tu ∈ Im T ∩ Im R− = {0},

and thus Tu = R−u− = 0. Since R− is injective, we have u− = 0 and thus u ∈ ker T ∩ ker R+ = {0},
thus u = 0.

□

Proposition 1 (Schur complement formula). T̃ =
(

T R−
R+ 0

)
is invertible with T̃−1 =

(
E E−
E+ E−+

)
. Then

dim ker T = dim ker E−+, dim cokerT = dim cokerE−+. In particular, T−1 exists iff E−+ is invertible, and
in this case

T−1 = E − E−E−1
−+E+. (2)

Note that in this case IndT = dim ker T − dim cokerT = 0. Therefore E−+ is a n± × n± matrix (n+ = n−).

Theorem 3.2. T : B1 → B2 Fredholm operator between Banach spaces, S : B1 → B2 continuous with
∥S ∥ ≪ 1, then

• T + S is also Fredholm,

• Ind(T + S ) = Ind(T ),

• dim ker(T + S ) ≤ dim ker T, dim coker(T + S ) ≤ dim cokerT.

Proof. ∥S ∥ ≪ 1 implies that

∥∥∥∥∥∥
(
S 0
0 0

)∥∥∥∥∥∥ ≪ 1. Thus T̃ +
(
S 0
0 0

)
is also invertible. Denote its inverse as(

ẼS ẼS
−

ẼS
+ ẼS

−+

)
. Thus dim ker(T +S ) = dim ker ES

−+ ≤ n+, dim coker(T +S ) = dim cokerES
−+ ≤ n−, thus T +S

is Fredholm with Ind(T + S ) = n+ − n− = IndT . □

Followings are some basic facts about compact operators:

Proposition 2. • Lc(B1, B2) ⊂ L(B1, B2) is a closed two-sided ideal.
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• If T is semi-Fredholm i.e. dim ker T < ∞ and Im T is closed, K is a compact operator, then T + K
is also semi-Fredholm with Ind(T + K) = IndT.

Theorem 3.3 (Atkinson characterization of Fredholm operators). T : B1 → B2 bounded linear operator
between Banach spaces, then TFAE:

• T is Fredholm,

• ∃E : B2 → B1, such that T E = I + R1, ET = I + R2 with R1,R2 finite rank operators,

• ∃E : B2 → B1, such that T E = I + K1, ET = I + K2 with K1,K2 compact operators.

• ∃E1 : B2 → B1 and E2 : B2 → B1 such that T E1 = I + K1, E2T = I + K2 with K1,K2 compact
operators.

Remark 4. Briefly, Fredholm operators are invertible up to compact perturbations.

Proof. (1) =⇒ (2) By algebraic Fredholm theory,(
T R−
R+ 0

)(
E E−
E+ E−+

)
=

(
T E + R−E− ∗

∗ R+E+

)
=

(
I 0
0 I

)
. (3)

(
E E−
E+ E−+

)(
T R−
R+ 0

)
=

(
ET + E−R+ ∗

∗ E+R−

)
=

(
I 0
0 I

)
. (4)

Thus reading the first row/column we get the desired result with R1 = R−E− and R2 = E−R+, both finite
rank.

(2) =⇒ (3) and (3) =⇒ (4) are trivial.
(4) =⇒ (1) T E1 = I + K1, thus Im T ⊃ Im(I + K1), which implies codim Im T < ∞ (since I + K1 is

Fredholm with index 0, because K1 is compact). Similarly, E2T = I +K2 implies dim ker T < ∞. Thus T
is Fredholm. □

Example 6 (Application: Toeplitz operators). H2 = { f ∈ L2 : f (x) =
∑

n≥0 aneinx} the Hardy space on the
circle. Let f ∈ C(T) and f (eiθ) =

∑
m∈Z f̂meimθ be its Fourier series. The Toeplitz operator T f : H2 → H2

is defined as T f u = P( f u) where P is a projection from L2 to H2 (view as a strip-like matrix acting on ℓ2

the Fourier coefficients). Then T f is Fredholm with

IndT f = −winding number of f around 0 = −
1

2π
[arg f (eiθ)]2π

θ=0 = −
1

2πi

∫ 2π

0

f ′(eiθ)
f (eiθ)

dθ. (5)

Here | f | > 0 on T.

Proof. We have f , g ∈ C(T) implies T f Tg − T f g ∈ Lc(H2). This is because for p, q being trigonometric
polynomials we have by suitable cutoffs that TpTq − Tpq is of finite rank. Thus by the fact that L is
compact and that

∥∥∥T f

∥∥∥ = ∥ f ∥∞ and that trigonometric polynomials are dense in C(T), we get the desired
result. Now if f is nowhere vanishing, then there exists g ∈ C(T) such that f g = 1. Thus T f Tg = I + K1,
TgT f = I + K2 with K1,K2 compact. By Atkinson’s theorem, T f is Fredholm. We compute that IndTen

which is a translation operator is −n. Thus IndTen = −winding number of en around 0. Now it remains to
show that for f with zero argument variation, IndT f = 0. In such case we write f = eF with F ∈ C(T)
continuous. Note that index is stable on a homotopy we have IndT f = IndTetF |1t=0 = IndT1 = 0. □
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Theorem 3.4 (Riesz). Suppose S ∈ Lc(B), Nk := ker(I + S )k, then there exists some J such that N =⋃
k≥0 Nk = ker(I + S )J. Moreover, for the same J, F =

⋂
j≥0 F j = Im(I + S )J with F j = Im(I + S ) j, and

we have the topological direct sum decomposition B = N ⊕ F, both N and F are invariant under S , and
(I + S )|F is invertible.

Proof. If the ascending chain Nk never stabilizes, then by the proof of “identity is compact iff finite
dimensional” we can find xk ∈ Nk such that ∥x − xk∥ ≥ 1 for any x ∈ Nk−1 and ∥xk∥ = 1. Let x =
(I + S )xk − S x j ( j ≤ k − 1), then since Nk−1 is S -invariant, we have that x ∈ Nk−1 and thus ∥x − xk∥ =∥∥∥S (xk − x j)

∥∥∥ ≥ 1. This means that {S xk} has no Cauchy subsequence, contradicting the compactness of
S . Thus Nk stabilizes at some J. Similarly for F j by the fact that dim ker(I + S )J+1 = dim ker(I + S )J

implies dim coker(I + S )J+1 = dim coker(I + S )J implies Im(I + S )J+1 = Im(I + S )J. (Note that S is
compact and thus I + S is Fredholm with index Ind(I + S ) = Ind(I) = 0.)

Now N is a finite union of finite dimensional spaces, thus is finite dimensional (or directly note that
(I + S )J = I + compact is Fredholm), and F is closed, thus this direct sum is topological. □

Theorem 3.5 (Analytical Fredholm theory). We assume that Ω ∋ z 7→ A(z) is a meromorphic family of
Fredholm operators on B, such that A(z0)−1 exists for some z0. Then Ω ∋ z 7→ A(z)−1 is meromorphic with
values in L(B), with poles of finite rank.

Proof. Since Ind(A(z0)) = 0 and index is stable under continuous perturbations, we have Ind(A(w)) = 0

for any w ∈ Ω (Ω is a connected open set). Thus the Grushin opeartor
(
A(w) Rw

−

Rw
+ 0

)
is invertible. In a

neighborhood of w, z 7→
(
A(z) Rw

−

Rw
+ 0

)
is still invertible. Since z 7→ A(z) is holomorphic, we have z 7→ Ew

∗ (z)

(∗ = NONE, −, +, −+) are also holomorphic. Thus by Schur complement formula, we have

A(z)−1 = Ew(z) − Ew
−(z)(Ew

−+(z))−1Ew
+(z). (6)

By finite-dimensional argument, since det Ew
−+(z) is holomorphic and non-vanishing at z = w,

Ew
−(z)(Ew

−+(z))−1Ew
+(z) is meromorphic with poles of finite rank at z = w. Together with the holomorphy

of Ew(z), we get the desired result. □

Example 7 (Application: Riesz projectors). P : X1 → X2 is continuous inclusion, then by analytic
Fredholm theory,

(P − zI)−1 = −

(
Π

z − z1
+ · · · +

(P − z1)N+1Π

(z − z1)N

)
+ R0(z) (7)

where z1 is a pole, z 7→ R0(z) is holomorphic, and Π : X2 → ker(P − z1I)N is the Riesz projector onto the
generalized eigenspace of P at z1. We can recover the Atkinson result by noting N = ΠX1, F = (I −Π)X1.

Proof. WLOG z1 = 0, applying analytic Fredholm theory to P − zI, we have

(P − zI)−1 =
A1

z
+

A2

z2 + · · · +
AN

zN + R0(z), (8)

Π := −A1 = −
1

2πi

∮
|z|=ϵ

(P − zI)−1dz, (9)

Π2 = −
1

4π

∮
|z|=ϵ

∮
|w|=ϵ

(P − zI)−1(P − wI)−1dzdw = −
1

2πi

∮
|z|=ϵ

(P − zI)−1dz = Π, (10)
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applying (P − z) on both sides and matching the terms, we get PA−N = 0 and PA−k = A−k−1(k < N), and

Π+ (P− z)R(z) = I ⇒ (P− z)R(z) = I−Π⇒ (P− z)(I−Π)R(z) = I−Π⇒ PR(0)(I−Π) = I−Π, (11)

therefore P|Im(I−Π) is invertible, and

N = ImΠ = ker PN , F = Im(I − Π) = Im PN . (12)

We recover the Atkinson decomposition X1 = N ⊕ F. □

4 Duality
First we give the two main results for dual operators.

Theorem 4.1. T ∈ L(B1, B2), Im T closed, then Im T ∗ is also closed and

• (ker T )◦ = Im T ∗, ker T ∗ = (Im T )◦,

• dim ker T = dim cokerT ∗, dim cokerT = dim ker T ∗,

• In particular, if T is Fredholm, then so is T ∗ with IndT ∗ = −IndT.

The proof is based on the following algebraic result:

Theorem 4.2. W ⊂ B is closed, define

ι∗ : B∗ → W∗, ι∗|W◦ = 0, (ι∗)′ : B∗/W◦ → W∗ is an isometric isomorphism. (1)

q∗ : (B/W)∗ → B∗, q∗((B/W)∗) = W◦, q∗ : (B/W)∗ → W◦ is an isometric isomorphism. (2)

Proof. • ι∗ξ = ξ|W since ι is an embedding. Thus ι∗ξ = 0, if and only if ξ ∈ W◦. For any η ∈ W∗, by
HB ∃ ξ ∈ B∗ such that ξ|W = η and ∥ξ∥ = ∥η∥. Thus ∥ι∗ξ∥ = ∥η∥ = ∥[ξ]W◦∥. Thus (ι∗)′ is an isometric
isomorphism.

• For any ζ ∈ (B/W)∗, we consider

⟨x, q∗ζ⟩ = ⟨qx, ζ⟩ = ⟨[x]W , ζ⟩ (3)

Thus q∗ζ : x 7→ ⟨[x]W , ζ⟩, therefore q∗ζ ∈ W◦ because [x]W = [0]W for x ∈ W. We take any ξ ∈ W◦,
ξ′ : B/W → K is well-defined since ξ|W = 0. Moreover, ∥ξ′∥ = ∥ξ∥. Therefore q∗ is an isometric
isomorphism.

□

Proof of the theorem. If T is bijective, then there exists S such that S T = IB1 , T ∗S ∗ = IB∗1
, S ∗T ∗ = IB∗2

,
thus all the results hold trivially.

If T is not bijective, define

T1 : B1 → B1/ ker T, T2 : B1/ ker T → Im T, T3 : Im T → B2, (4)

then T1 is surjective, T2 is bijective, T3 is injective. T = T3 ◦ T2 ◦ T1, thus T ∗ = T ∗1 ◦ T ∗2 ◦ T ∗3 .

T ∗1 : (B1/ ker T )∗ → B1, T ∗3 : B∗2 → (Im T )∗. (5)
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Since (B1/ ker T )∗ � (ker T )◦, thus Im T ∗1 � (ker T )◦. Since (Im T )∗ � B∗2/(Im T )◦, thus ker T ∗3 = (Im T )◦.
T1 surjective =⇒ T ∗1 injective, T3 injective =⇒ T ∗3 surjective. T2 bijective =⇒ T ∗2 bijective. Thus

we have
Im T ∗ = Im(T ∗1T ∗2T ∗3) = Im T ∗1 � (ker T )◦, (6)

ker T ∗ = ker(T ∗1T ∗2T ∗3) = ker T ∗3 = (Im T )◦. (7)

For the dimensional relations, we just note that the dimension of a subspace equals to its dual space, thus

dim ker T = dim(ker T )∗ = dim(B∗1/(ker T )◦) = dim(B∗1/ Im T ∗) = dim cokerT ∗, (8)

dim cokerT = dim(cokerT )∗ = dim(B/ Im T )∗ = dim(Im T )◦ = dim ker T ∗. (9)

□

Theorem 4.3. If T ∈ Lc(B1, B2), then T ∗ ∈ Lc(B∗2, B
∗
1).

Proof. We need to show that for ξn ∈ B∗2, T ∗ξn has a convergent subsequence. We define K = {T x :
∥x∥B1 ≤ 1} ⊂⊂ B2. Note that {ξn} is in C(K) and

∣∣∣ξ jy
∣∣∣ ≤ ∥∥∥ξ j

∥∥∥∥y∥ = ∥y∥. Therefore by Arzelà-Ascoli
theorem, there exists a convergent subsequence ξnk → ξ in C(K). By passing to a subsequence we
assume that ξ j is convergent in C(K), thus∥∥∥T ∗ξ j − T ∗ξk

∥∥∥
B∗1
≤ sup

x∈B1,∥x∥≤1

∣∣∣⟨T ∗(ξ j − ξk), x⟩
∣∣∣ = sup

x∈B1,∥x∥≤1
⟨ξ j − ξk,T x⟩ ≤

∥∥∥ξ j − ξk
∥∥∥

C(K)
→ 0. (10)

□

Theorem 4.4 (Banach-Alaoglu). U is the closed unit ball in B∗, then U is compact in the weak-∗ topology.

Proof. Only prove for the case B is separable. Let {xn} be a dense subset of B. We consider the seminorms

pn(ξ) = |⟨ξ, xn⟩|, ξ ∈ B∗. (11)

We claim that the topology generated by these seminorms is exactly the weak-∗ topology on B∗. By the
following lemma, indeed, enough to show that for any given x, ε > 0, there exists some j, δ > 0 such that
{ξ : |⟨x, ξ⟩| < ε} ⊃ {ξ :

∣∣∣⟨x j, ξ⟩
∣∣∣ < δ}. We find x j such that

∥∥∥x − x j

∥∥∥ ≤ ε
10 and take δ = ε

10 , we have

|⟨x, ξ⟩| ≤
∥∥∥x − x j

∥∥∥∥ξ∥ + δ ≤ ρ + δ < ε. (12)

Thus we only need to show that ξn ∈ U has a subsequence such that ⟨x j, ξnk⟩ converges for any j. By
diagonal argument, we can find such subsequence. □

Example 8. { fn} a bounded sequence in Lq. By Banach Alaoglu, there exists a subsequence { fnk} and
some f ∈ Lq such that for any g ∈ Lp ( 1

p +
1
q = 1), we have∫

fnkgdx→
∫

f gdx. (13)

Lemma 1. L : F → K is continuous linear functional with respect to the topology σ(F,G) (geneerated
by the huge number of seminorms x 7→ |⟨x, y⟩| for each fixed y ∈ G, and y 7→ ⟨x, y⟩ is linear for each fixed
x ∈ F). Then ∃y ∈ G such that L(x) = ⟨x, y⟩ for any x ∈ F. In particular, if ξn − ξm converges to 0 in
weak-∗, then there exists some ξ ∈ B∗ such that ξn converges to ξ in weak-∗.
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Proof. Since L is continuous, there exists some finite number of seminorms and C > 0 such that

|L(x)| ≤ C
N∑

j=1

∣∣∣⟨x, y j⟩
∣∣∣, ∀x ∈ F. (14)

We define N = {x ∈ F : ⟨x, y j⟩ = 0, j = 1, · · · ,N}, then L|N = 0, F/N is finite dimensional. We define L′

and Y j on F/N as
L′([x]) = L(x), Y j([x]) = ⟨x, y j⟩. (15)

Then they are all well-defined. Note that

dim Span(Y1, · · · ,YN) ≤ N = dim(F/N)∗ − dim[Span(Y1, · · · ,YN)]◦ = dim(F/N)− dim{[0]} = dim(F/N),
(16)

thus we have F/N = Span(Y1, · · · ,YN). Therefore there exists c j such that L′ =
∑N

j=1 c jY j. Thus for any
x ∈ F, we have

L(x) = L′([x]) =
N∑

j=1

c jY j([x]) =
N∑

j=1

c j⟨x, y j⟩ = ⟨x,
N∑

j=1

c jy j⟩. (17)

We take y =
∑N

j=1 c jy j ∈ G, and we are done. □

Corollary 2. M ⊂ B∗, then M is closed in weak-∗ iff M ∩ U is closed in weak-∗.

Corollary 3. If Im T ∗ is closed, then Im T is also closed.

5 Spectral Theorem for Self-Adjoint Operators
Example 9. Tu = 1

i u′ on H = L2(0, 1). IfD1 = C∞c (0, 1), then T is symmetric (since no boundary terms).
IfD2 = {u ∈ L2 : u′ ∈ L2} (u′ is the weak derivative), then T is not symmetric.

Definition 5.1. T densely defined, we say that u ∈ DA∗ if v 7→ ⟨u, Av⟩ is continuous on DA with respect
to the norm of H. In such case, sinceDA is dense in H, the continuous linear functional uniquely extends
to H and thus by Riesz representation theorem there exists a unique f ∈ H such that ⟨u, Av⟩ = ⟨ f , v⟩ for
any v ∈ DA. We define A∗u = f .

Proposition 3. A closed and symmetric, then for any z ∈ C \ R, we have

• ker(A − zI) = {0},

• Im(A − zI) is closed,

• |Im z|∥u∥ ≤ ∥(A − zI)u∥ for any u ∈ DA.

Proof. We only need to prove the last item, since the first two follow directly. We compute

∥(A − z)u∥2 = ∥Bu∥2 + (Im z)2∥u∥2 ≥ (Im z)2∥u∥2. (1)

□
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Proposition 4. A symmetric and densely defined, then define

n± = dim ker(A∗ ± i) = dim coker(A ∓ i). (2)

We have that codim Im(A − z) = dim ker(A∗ − z) is constant on {Im z > 0} and {Im z < 0} respectively,
equal to n+ and n−. (They are called the deficiency indices of A.)

Proof. We first directly verify that ker(A∗−z) = [Im(A−z)]⊥ by the density ofDA. Thus codim Im(A−z) =
dim coker(A∗ − z). Now we want to apply the Fredholm theory argument but cannot directly do this for
unbdd operators. Thus we consider the graph operators:

T : G(A) ∋ (u, Au) 7→ (A − z)u ∈ H, (3)

S : G(A) ∋ (u, Au) 7→ −ζu ∈ H. (4)

For Im z > 0 and |ζ | ≪ 1, note that ker(A − z) = 0 and Im(A − z) is closed (z < R), we have ker T = 0
and Im T is closed (semi-Fredholm). By the Fredholm theory we have Ind(T + S ) = Ind(T ) for ζ small
enough. That is, IndT = −codim(Im(A − z)) = −codim(Im(A − z − ζ)). Thus codim Im(A − z) is constant
for Im z > 0. Similarly for Im z < 0. □

Proposition 5. A is self-adjoint iff n+ = n− = 0.

Proof. If A is self-adjoint, then n± = dim ker(A∗± i) = dim ker(A± i) = 0, since ±i < R and the fact that A
is closed and symmetric (self-adjointness implies closedness, since an adjoint opeartor is always closed).
If u ∈ DA∗ and Im z > 0, since n+ = 0, we have Im(A − z) = H, thus ∃v ∈ DA, (A − z)v = (A∗ − z)u, since
A is symmetric, we have (A∗ − z)(u − v) = 0, by n− = 0 we have u = v ∈ DA. □

Theorem 5.2 (Kato). Suppose A is s.a. with domain DA, and V is symmetric with DV ⊃ DA. If there
exists 0 ≤ a < 1, b > 0 such that for any u ∈ DA, ∥Vu∥ ≤ a∥Au∥ + b∥u∥, then A + V with domain DA is
also s.a.

Proof. By the assumption graph norms of A and the norm of A + tV (0 ≤ t ≤ 1) are equivalent. We WTS
n±(t) := codim(A + tV ± i). Once we have this, then n±(0) = 0 implies n±(1) = 0, thus A + V is s.a. We
consider the graph operators:

T : G(A + tV ± i)→ H, T (u, (A + tV ± i)u) = (A + tV ± i)u, (5)

S : G(A + tV ± i)→ H, S (u, (A + tV ± i)u) = ζu, |ζ | ≪ 1. (6)

Im T closed, ker T = {0}, ∥S ∥ ≪ 1. By Fredholm, Im(T+S ) is closed, ker(T+S ) = {0}, and codim Im(T+
S ) = −Ind(T + S ) = −IndT = codim Im T . Thus n±(t) is constant in t.

□

Example 10. H = H0 + γ|x|−1 on L2(R3), H0 = −△, γ ∈ R, DH0 = {u ∈ L2 : △u ∈ L2} is s.a. with
DH = DH0 .

Proof. We prove the following estimate:∫
|χu|2

|x|2
≲ ∥△u∥2 + ∥u∥2, (7)

then use Kato’s theorem to conclude. □
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Remark 5. Remark of history: Kato also proved the many-body version of this theorem.

Theorem 5.3 (Cayley transform). If A is symmetric, densely defined, then T : (A + i)u 7→ (A − ı)u with
DT = (A + i)DA is isometric, Im(I − T ) is dense, ker(I − T ) = {0} andDA = (I − T )DT .

Conversely, if T is isometric with Im(I − T ) dense and ker(I − T ) = {0}, then A : (I − T )v 7→ i(I + T )v
withDA = (I − T )DT is symmetric and densely defined.

Corollary 4. Suppose A is symmetric and densely defined and closed, then A has a s.a. extension iff
n+ = n−.

Proof. By Cayley transfrom, A has a s.a. extension iff T has a unitary extension. This iff

codimDT = codim Im T. (8)

SinceDT = Im(A + i), Im T = Im i(A + I) = Im(A − i), we have the desired result. □

Theorem 5.4 (Spectral theorem I). There exists a unique operator-valued mapping f 7→ f (H) ∈ L(H)
for any s.a. operator H on a Hilbert spaceH and f ∈ C(R) such that

• ( f g)(H) = f (H)g(H),

• f (H)∗ = f (H),

• The functional calculus of rw(z) = (w − z)−1 is the resolvent, i.e. rw(H) = (H − wI)−1,

• If supp f is away from σ(H), then f (H) = 0,

Definition 5.5. We say that L ⊂ H closed subspace is invariant under H, if (H − z)−1v ∈ L for any v ∈ H
and z ∈ C \ R.

Lemma 2. H is separable, then ∃L j ⊂ H cyclic subspaces (i.e. ∃u j ∈ L j such that
L j = Span{(H − z)−1u j : z < R}) such thatH =

⊕
j L j and L j ⊥ Lk for j , k.

Theorem 5.6 (Spectral theorem II). H is s.a. on H , S = σ(H) ⊂ R, then there exists a µ finite measure
on S × N, and a unitary operator U : H → L2(S × N, dµ) such that

• If h : S × N→ R is the function:
h(λ, n) = λ, (9)

(i.e. the multiplication by λ on copies indexed by n), then ξ ∈ DH iff hU(ξ) ∈ L2(S × N, dµ), and
for such ξ we have the diagonalization

UHU−1ζ = hζ, (10)

for any ζ ∈ U(DH).

• We have the functional calculus
U f (H)U−1ζ = f (h)ζ. (11)

In the case where we have a cyclic vector, i.e.

H = Span
{
(z − H)−1v : z ∈ C \ R

}
(12)

Then the spectral theorem II can be simplified as follows:
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Theorem 5.7 (Spectral theorem II′). ∃µ a finite measure on S , U : H → L2(S , dµ) unitary such that

• ξ ∈ DH iff hU(ξ) ∈ L2(S , dµ), h is the multiplication by λ on S , and

• we have the diagonalization
UHU−1ζ = hζ, (13)

for any ζ ∈ U(DH).

• we have the functional calculus.
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