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Chapter 1

Eigenvalue Inequalities

1.1 The min-max inequality

Theorem 1.1.1. A € M, (C) is a Hermitian matrix, we denote \i,(A) as the k-th largest eigenvalue of
A, then we have

M(A) = max min (Az,x) =  min max (Az, ). (1.1.1)
dim V=k ||z||=1,zeV dim V=n—k+1 ||z||=1,zeV

Lemma 1. Let V be a subspace of C" with dim V' = k, then v € V N S(V) s.t. (Av,v) < Ag.

Proof. Let v; be the unit eigenvalue of \;(A). We take W = Span(vy, - - ,v,) thendim W =n —k+ 1.
Note

dim(VNW) =dim(V) +dim(W) — dim(V + W) > dim(V) + dim(W) —n = 1, (1.1.2)

then we have V N IW # @ = Jv € VN W with [[v]| = 1. Since v € W, we have v = > 7, a;v; with
n 2 2
2l = P =1=

(Av,v) = <Z aj)\jvj,Zajvj> = Z)\j|aj|2 < )\kz la;|” = A (1.1.3)
j=k

n
j=k =k Jj=k

Remark 1. This inequality is also called Poincaré inequality.

Proof of Theorem 1.1.1. We take any subspace V' with dimension k of C™, by Poincaré’s inequality, we

have
min  (Az, z) < . (1.1.4)
zeVNS(V)
By the arbitrariness of V' we have

i A < \i. 1.1.5
gnax  wmin (Az,x) < A (1.1.5)

Remark 2. * X2(A) = mincogim=1 Maxgzes(v)nv (Az, T);

5



6 CHAPTER 1. EIGENVALUE INEQUALITIES

* M(A+ B) < X(A) + Mi(B);
* [M(A+B) = A(A) < [|B].

Theorem 1.1.2 (Poincaré separation theorem or Cauchy interlace theorem). A Hermitian, P a orthogonal
projection in M, (C) s.t. PAP = B. Denote rankP = m, and the eigenvalues

A Xi(A) = M(A) > > M (A); (1.1.6)
B (B) > pa(B) > -+ > un(B). (1.1.7)

Then for all k < m, we have
Amik(A) < x(B) < M(A). (1.1.8)

Proof. By the min-max theorem applied first on RanP and then on C", we have

pi(B) = min max (PAPzx,z) = min max (Az,z)
dimV=m—k+1,VCRanP zeVNS(V) dimV=m—k+1,VCRanP zcVNS(V) (1 1 9)
> min max (Az,z) = \y_mik- o
dim V=m—k+1 2eVNS(V)
On the other hand,
wp(B) = max min (PAPzx,z) = max min (Az, z)
dim V=k,VCRanP zeVNS(V) dim V=k,VCRanP zeVNS(V) (1 1 10)
< max min (Az,z) = Ag.
dimV'=k z€VNS
0

1.2 Reading: An application of the min-max inequality—Cheeger
inequality
Theorem 1.2.1 (An application: Cheeger inequality). G = (V, E) is a d-regular graph, n = |V'|. Let A

be the adjacent matrix of G.
Consider M = éA is a Hermitian matrix, then we observe

M1=1, 1:=(1,---,1)". (1.2.1)
And 1 is the largest spectrum of M. What about 1 — \y?
Cheeger:
h(G)?/2 < 1— )X < ®(G) < 2h(G). (1.2.2)
Here,
0S :={(z,y) € E(G):x € S,y € V\S}, (1.2.3)
h(G) = min{g—g::SCV,0< |S] < |V]/2} (1.2.4)

) . |0S]| .
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Proof. Some important observations:

* In fact
L. [STIVAS] _ _IS]IVAS] :
—min{|S|, |[V\S|} < = < min{|5], [V\S|}. (1.2.6)
2 V] ST+ [VAS]
ie. h(G) < ®(G) < 2h(G). Therefore the two different “sparsities” of graphs are equivalent in
some sense.
* A2 = MaXesin{1}L zeRn (Mz,x)
* Gisdregular= Y7 My, =Y ;| My, = 1.
e For 1 — )\, we have
1—Xy= min r,x) — (Mx,x
o= min (n.) = (Ma,2))
= min Zx? — Z Mjkxjmk>
211, [z]|=1 (j:l =
= min E i M (z; — xx)*  (by the row-sum and col-sum are 1)
el1,|z]=1 2 et IRV
1 Y M (z; — x)? _ 1
= min — - Zj’ﬁfl () T ) (by the descriptionz L. 1 <= =z =7 — —(Z,1)1)
v#1 2 ij 1(% aTk)? n

z£1 2 ‘ n n 2"
n Zj:l %Q - (Zj:l xj)
(1.2.7)

¢ On the other hand,

05|

S d|S||‘|/‘>*|9‘

O(G) =

: 5 gt M () — )
T e{0N}n k01 d [~ n (1.2.8)
€{0,1}",2#0,1 4 (Z]._l $J> (n — Z] 1 $J> L
1 ank 1 M — )

min 5 5
z€{0,1}",2#£0,1 n n
”Zg 1% - Zj:l Lj

Therefore
1= <O(G). (1.2.9)

* Now we turn to address another side. Let v € R"”, v # 0 s.t. Mv = \yv. By Perron-Frobenius
theorem, the components of v cannot be all positive. Thus, we can define

y£0, J¥=u vzl (1.2.10)
’ Yj 0, v; < 0.
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Then we have

(Mv,y) = Xa(v,y) = Aa((y,y) + (v —:Oy,y)) =Xy, y), (1.2.11)
and
oYy Mvy) vy = (Myy) (M =v)y)  &y) = (My,y)
T lyy) Ly) v, y) <Y>>OY> - (v,¥)
3 2 phet Mik(y; — yi)?
a (y,y) ’

(1.2.12)
By the Cauchy-Schwarz Inequality, we have that

2 2 2
<Zj,k=1 Mak’?/? - yi\) - (Zj,k:l Mjk|3432' - yl%’) - (Zj,k:l Mjk‘y? - yl%')

— Ay > — > — >
20y 1P e (s +w)®) — Ay P ey (02 + 42)) 8llyl*
(1.2.13)
W.L.O.G.lety; > -+ > y,, we take t = max{k : y > 0}. Then we have
t n 2 2
1) (2 Z]ﬂ Zk:j-{-l Myk(y] - ?Jk))
— Ay >
8llyl*
t n k—1 2 2 2
(Z]:1 Zk:jJrl Ee—] My — yé+1))
2|y "
2
l n
(22:1 (ijl k—t41 Mjk) (v — ?J?H)) | (1.2.14)
= 1 (j<Ll<k)
2|yl
2
(0 w2 — o)
2y
2 2
( 2:1 hG)e(y; — 3/?+1)) _ h(G)? (2221 y?) _ lh(G)z
N 2)lyl* 2yl 2
O

1.3 Singular value inequalities

Theorem 1.3.1. A € M, (C), |\;(A)] = lim,, o A;(JA]™)1/™

Remark 3. Notations: A € M, (C), recall the polar decomposition A = U|A| = U(V*DV'). Here V
diagonalizes the matrix A* A.
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Proof of Theorem 1.3.1. By Jordan decomposition A = T'JT !, T nonsingular, J Jordan. In fact,

N (JA]™? = N (A A™) = (T J™T*TJ™T 1)

= max min (T *J""T*TJ"T 'z, )
dim V=j ||z||=1,2€V

<|7)? max min (T*J™J"T 'z, z)
dim V=j ||z||=1,zeV

= | TIPA (T I TY) = TP\ (T T T T ™) - (A (ATA) = A (AAY))
—_ 2 m m * m - m Txm
<ITIPIT AT = NAM™) S ITHITH Oy (T 7)) 2

Since we have

ST = diag(Jny () Ll () Ty ) T (), WLOGL | 2 - =
and
7%§£b(J“1]*"ﬁl/%” = diag(|p1[Lny, -+ s [kl L),
we have

limsup)\nj(]Ale/m < Jyl, ie. Timsup A (JA]™)Y™ < A (A)]
m—0o0 m—0o0

For the same reason, lim,, ,, A;(|A™)Y/™ = |\, (A)|.

Proposition 1. Hermitian dilation
(0 A\ (U 0 AN (U 0"
o (o) = (0 7)) )

Ai(B) = A(|A]) for1 <j <mn,

It is easy to see that

Ni(B) = =Anja(|A]), forn+1<j<2n.

Theorem 1.3.2. For any matrices A, B, we have

0 A 0 B 0 A—B
Wi o) (e )= sy Mo 7)1

max [0;(A) — 0;(B)| < [|A = BJ|.

1<j<n

(A (AL = A(B])| =

ie.

Proposition 2 (Schur-Horn Inequality). A Hermite, we introduce the notations:
* M(A) > M(A4) =+ > A (A),
® Qi > - >, are the diagonal elements of A ordered non-increasingly.

Then we have {\;} majorize {a;;, }

(1.3.1)

(1.3.2)

(1.3.3)

(1.3.4)

]

(1.3.5)

(1.3.6)
(1.3.7)

(1.3.8)

(1.3.9)
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Proof. We define B = (aiji].)l i<k = PAP*. By Cauchy interlace theorem, we have

A—k+i(A) < N(B) < \(A) 1<j5<k. (1.3.10)

We take summation on both sides, yielding
Aip1 (A) + -+ A (A) S Tr B < M(A) + - + M(A). (1.3.11)
O

Theorem 1.3.3 (von Neumann'’s trace theorem). A, B are Hermitian matrices, then we have

Tr(AB) < zn: Ai(A)N(B), (1.3.12)

r(AB) >Z>\ An_jr1(B). (1.3.13)

Proof. By A =U*DU, we let A = diag(\;(A)) ordered non-decreasingly, then

TrAB =) X;(A)by;. (1.3.14)
By Proposition 2, we have
k k
> by Z V1< k <n, (1.3.15)
j=1 j=1
k k
D b= Mky(B), VI<k<n. (1.3.16)
— —

Therefore, by the Abel formula, we have

n—1

TrAB =) (A(A) = Aja(A Zbkkm Zb

j=1 7j=1

< nZ(Aj(A) Ajp1(A ZAk W(A)D>N(B) (1.3.17)
= i Ai(A)A; (B

]

Definition 1.3.4 (Majorization). Let x,y be two real vectors ordered non-increasingly. We say x ma-
jorizes vy, ifZ?:l T; > Zle yjforalll <k <nand} _ x; =37y
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Theorem 1.3.5. x majorizes y <= 1 a doubly-stochastic matrix S s.t. y = Sx.
We say S is a doubly-stochastic matrix, if

Sk >0, > Sp=1=> S, Vi<jk<n (1.3.18)
j=1 k=1

To prove Theorem 1.3.5, we need the following lemma:
Lemma 2. x majorizes y <= There exists an orthogonal matrix Q such that [Q* diag(x)Ql;; = y;.

Proof of Lemma 2. The proof is based on the 2 x 2 case and then by induction. The complete proof can
be found in the hand-written note. [

Proof of Theorem 1.3.5. This is a very fast corollary of Lemma 2, since we have
i= Y Tk (1.3.19)
k=1

Let S = (q3;)} s—1» then S is a real symmetric matrix and the row-summation of column-summation are
both 1, therefore S is a doubly-stochastic matrix and y = Sx. [

1.4 Exercise I

Exercise 1. Show that M,, ,,(K) ® M, s(K) = My ms(K).

Proof. 1t is easy to see that M, ,,(K) ® M, ((K) C M, ,»s(K). On the other hand, since we have the
explicit description

M, m(K) @ M, s(K) =Span{E;; ® Ejy, 1<i<n,1<j<m,1<k<r1<[<s}. (14.1)

We have dimM,, ,,(K) ® M, s(K) = nrms = dimM,, ,,s(K). Therefore M, ,,(K) ® M, (K) =
M, ms(K). O
>

Exercise 2. Suppose A € B(H) is a self-adjoint compact operator on a Hilbert space H. Let \{(A)
Ao(A) > -+ be the list of all positive eigenvalues of A. Show that
M(A) = max min (Ax,Xx)
VCH, xeV|x|=1
dim V=£k (142)
= min max (Ax, X)
VCH,codim V=k—1 x€V||x||=1

Proof. By the spectral theory of compact self-adjoint operators on the Hilbert space, we have

H=ker A <@ Span(uk)> : (1.4.3)

i=1

where {uy} are the eigenvectors corresponding to {\;(A)}. Let S, = Span{uy, ug41,- - }, then Sy is a
closed subspace with codimS;, = k— 1. We take V a k-dimensional subspace of #, then we first consider

T H—>H/S, 7y:V—H/Sk (1.4.4)
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Since V is finite-dimensional, we have
k =dimV = dim(ker 7|y)+dim(Im 7|y) < dim(VNSk)+dim(H/Sk) = dim(VNSg)+k—1. (1.4.5)
Therefore, V N Sy, # {0}. We take v € V N Sy, with ||v|| = 1, then by the construction of Sy we have

(Av,v) < X\ (4) = inf  (Ax,x) < A\ (A). (1.4.6)

XV, x| =1

Note that the unit ball in # is weak-compact, therefore {x : ||x|| = 1} is compact, so we can write

min  (Ax,x) < A\x(A). (1.4.7)
xeV,||x||=1
By the arbitrariness of }V we have
sup min  (Ax,x) < A\, (A). (1.4.8)
VCH,dim V=Fk XEV, |x||=1
Since the equality is achieved when taking V = Span(uy, - - - , uy), we actually have
A(A) = max min  (Ax,x) < Ax(A). (1.4.9)

VCH,dim V=k xeV,||x||=1
The remaining part of the proposition can be proved analogously. 0

Exercise 3. Suppose A € M, (C) is Hermitian, show that

A(A) + -+ A(A) = sup Tr(AP), (1.4.10)
P*=P=P2 rank P=k
A1 (A) 4+ An(A) = inf Te(AP). (1.4.11)

P*=P=P2 rank P=k

Proof. We do this by intimating the proof of the min-max theorem. In fact, we assume P is the orthogonal
projection to Span(v;)%_, where {v;}%_, is the orthonormal basis. We denote the normalized eigenvectors
of Aby {u;}!",

Tr(AP) = Tr(PAP) = Z(AVZ', Vi) = Z <Z Aj(A)ujcy, Z ujcﬂ>

i=1 =1

_Zz/\ |cﬂ|_ZA )(;|Cﬁ|2)

=1 j5=1

(1.4.12)

By the normalization condition, we have

n k k k
SN el =D vl =k 0> e < 1. (1.4.13)
=1 =1

j=1 i=1

therefore,
Tr(AP) < A+ -+ A (1.4.14)

By the arbitrariness of the orthogonal projection P, and by taking P* = Zle u;u;, we yield the first
equality. The second equality follows by the same procedure.
]
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Proof using Cauchy interlace theorem. For any orthogonal projection P, by Cauchy interlace theorem,
we have

An—ei1(A) < XN (PAP) < M(A). (1.4.15)
Note that A\y41(PAP) = --- = \,(PAP) = 0, therefore Tr(PAP) = Z];:l Mi(PAP). Taking the
summation on both sides of eq. (1.4.15) yields the conclusion. [

Exercise 4 (Generalized Weyl inequality). Suppose A, B € M,,(C). Show that when2 < j+k <n+1,
we have

Aj+k-1(|A+ Bl) < A;(|A]) + A (| BJ). (1.4.16)
When j + k > n + 1, we have

Ajrh-n(|[A =+ Bl) = X (|A]) + Ae(|B]). (1.4.17)

Proof. We consider * = ( ** *) , by Weyl’s inequality for Hermitian case, we have

P ~ ~

Nith—1(A+B) < N(A) +M(B), 2<j+k<n+1, (1.4.18)
Naton(A+ B) > N(A) + Me(B), j+k>n+1. (1.4.19)
Since we have _
M(K) = M| k]), 1<C<n, (1.4.20)
we conclude that when 2 < j + k < n + 1,
Aot (|4 + BJ) < A (1A]) + Ae(|BI). (14.21)
When j + k >n+1,
Ajrk—n([A+ Bl) = A (JA]) + Ae(|1BJ). (1.4.22)
]

Exercise 5. Suppose A, B € M, (C), show that for 1/p+1/q =1, p,q > 0,

n 1/p n 1/q
|ReTr(AB)|§<Z)\j(]A|)p> (Z)\j(|B|)‘1) : (1.4.23)

j=1

Proof. We first prove the vN trace theorem for the non-Hermitian scenario. In fact, we consider

I *
= 1.4.24
whose eigenvalues ordered non-increasingly are

M(H]) > > N ]) = = k]) > > =X (]%]). (1.4.25)

= A B\ [(A*B
AB_(A )(B* )_( AB). (1.4.26)

In our case, we notice that
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Therefore,
Tr (ﬁ*é) — 2Re(Tr(AB)). (1.4.27)

By the vN trace theorem for Hermitian matrices, we have
|Re(Tr(AB))| < 1‘Tr(ﬁ*§>‘ < Youpii/e (Z)\ (|A]) )Up (zn:x(\BDq) v
) 2 — s !
n 1/p s n 1/q
= (ZM(IN)’”) (Z%(IBD")
j=1 j=1

Exercise 6 (x). The same assumptions as in exercise 5, show that

n 1/p n 1/q
|Tr(AB>|s<ZAj<!A\)p> (ZMIBDQ) - (1.4.29)

Jj=1

(1.4.28)

Proof. By the singular value decomposition, we may assume A is a non-negative diagonal matrix, then
we have

B) = Z%‘( ZZW YUieVieoj(A) = |Te(AB)| < Y 04(B)Sje0;(A).

j=1 =1 1<j,0<n
(1.4.30)
Here, Sj; = |U,;¢Vj¢|. Note that

> Si< (ZIUJ-@F (le =1, (1.4.31)
j=1 j=1 j=1

D Sie< (ijm (ZIV}-A? =1, (1.4.32)
/=1 /=1 /=1

therefore S is a sub-doubly stochastic matrix. There exists a doubly stochastic matrix @) s.t. S < (). By
Bitkhoff-von Neumann theorem, we have

N N

= Z ap=1, Q= Z ap Py, P permutation matrices. (1.4.33)
k=1 k=1
Therefore,
N n n
ITr(AB)| < Z ar Y 0i(B)og, o Z oy(B (1.4.34)
k= =1 =

Here, the equality holds if and only if S = I. Then the result follows by the Holder inequality in the
scalar case. O



Chapter 2

Operator Inequalities

2.1 Operator monotonicity and convexity
We recall some basic properties of positive operators:

Proposition 3. For A, B Hermitian matrices, we define A > B if and only A — B is positive semidefinite.
If A > B, we have

e A+ Xl = B+ M, forany X € R;

e S*AS > S*BS, since the positive property is invariant under congruent transformations. Note
that S does not have to be a square matrix.

The question is, whether we have A“ > B*? It is a very interesting problem and naturally leads to
the concept of operator monotonicity. We begin with an example.

Proposition 4. Let 0 < A < B, then A> < Bz. If A is invertible, then B~! < A~%.
Proof. Let A be a invertible matrix, then B is also invertible. By A < B, we we have
BY2AB7Y? <1, (2.1.1)

(Note that there are also some similar techniques in numerical linear algebra)
To prove B~1 < A~!, we only need to prove Az B~ *Az < 1ie. HA%B_lA%
note that

< 1. To do this, we

HA%B—lA% = r(AYV2 BT AY2) = (B2 ABY2) = ||BV2AB2|| < 1, 2.1.2)

using the property of the spectral radius 7(AB) = r(BA) (follows from the Sylvester determinant the-
orem, 0(AB) U {0} = o(BA) U {0}. Note that this property also holds for some infinite-dimensional
cases by considering (21 — AB)™1).
Inspired by this, we further consider B~/*A'/2 B~/* and we want to estimate its spectral radius. In
fact,
|B~*AYV2 BT = ||AV2BT? | < 1 (2.1.3)

15
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Now we have proved this proposition under the assumption that A is invertible. If A is not invertible,
then for any £ > 0 we have A + <1 is invertible since A > 0, and we have A + eI < B + ¢, therefore
(A+el)Y/? < (B +¢el)'/?. Note that

[(A+el)'? — A2 = |(Amax + €)% = AL | < 72 (2.1.4)
Then it follows that A < B by taking ¢ — 0. [

Definition 2.1.1. A% := Praygen, then we have A° = lim,, o, |A|1/ ",

Theorem 2.1.2. Suppose A, B are Hermitian matrices, then

* Forany o € [0,1], we have A* < B“.

o If Ais invertible, then for any a € [—1,0], we have A* > B“.

Proof. We fixed some A invertible and B > A. We prove by claiming that I := {« € [0,1] : A* < B*}
is a closed convex set. It holds trivially that 0,1 € I when A > 0.
For any o, ae € I, we show using the same approach as in Proposition 4 that

IC|| <1, C:= Biler+es) ga(ertaz) g=jlertas) (2.1.5)

Therefore we have C' < 1 i.e. A2(@1te2) < B3(@1+e2) Thys we conclude that I = [0, 1].
If A is not invertible, we first consider a € (0,1], (A + I)* and (B + I)“. Taking ¢ — 0, yields
A% < B When o = 0, we have

A% = lim AY™ < lim BY™ = B°. (2.1.6)

m—0o0 m—00

]

Another Proof. We provide a constructive and proof with more insights than just imitating Proposition 4.
In fact, we have

0SA<SB=B'<A'=B '+ A <A 4+ XN = AT AN S(BTEADTL (217)

Consider B
() = . 2.1.8
.00 = .18
Note that we have
sinar [ t sinamr [
t* = A%\ 1 A = A" %da. 2.1.
[0 e 5= [ @19)

Therefore f\(A) < fA(B),ie. A* < B“.
To see why this integral equality holds, we compute

0 a—1 ax
/ Y :/ ¢ da (2.1.10)
o l4+u r1+e”
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This is a textbook-example in complex analysis. Specifically, for the contour [—R, R| U [R, 27i + R] U
271 4+ R, 271 — R] U 271 — R, —R] = 71 U 72 U 73 U 4. The only singularity inside the rectangular is
z = mi, with residue being

lim (z — 7i) f(z) = lim e** SORLI—Y (2.1.11)
z—mi z—mi e — e™
Therefore
/f(z)dz = —2rie®™, (2.1.12)
gl
Note that
/ f‘ U |1 < celenr Ly g (R — o) 2.1.13)
< ———|dt < Ce' 7V — — 00). 1.
. B 1+ €R+1t
27r ea(—R—l—it) W
a (z+i27) i R eaT
/ / 1+6$+12W)dx——e /_R1+e$dx' (2.1.15)
Therefore we have
i ami (1 2a7ri) /+OO e de = /oo e d s (2 1 16)
—27ie™ = (1—e x r = . .
oo Ll H4e® oo L+ €% sina
]
Remark 4. Using change of variables, we have
i —1 * [t A
o = Sm(o‘—)ﬂf <X+m—1) AdN, e (1,2), Q2.1.17)
n 0

sin(a + 1)m

) /°° 1
t* = A%dA —1,0). 2.1.18

™

From which we can see that A < B = A* > B* for a € (—1,0).

Definition 2.1.3 (Operator Monotonicity). Suppose f : Dom(f) — R is a function, where Dom( f) is an
interval in R. If for any n € N, A < B € M, (C) Hermitian and Sp(A),Sp(B) C Dom(f), we have
f(A) < (<) f(B), then we say that f is (strictly) operator monotone.

Remark 5. f(t) = t* is operator monotone for o € [0, 1] and is strictly operator monotone for o €
(0,1]. f(t) = =t is strictly monotone on (0, 00) for a € [—1,0).

Example 1. Can we prove the operator monotonicity for o > 1?

3 11
A= <2 3) > <% %) = B. (2.1.19)

i 2 2

Note that L
B*=B= (g g). (2.1.20)

2 2
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We compute

v =[(5) 3 [() -3 - () G ()T

3 «
= <§> (2-3% = (4 +2%)) <0 (by convexity)
Therefore, although x* is strictly monotone for || > 1, but is not operator monotone.

The operator monotonicity is a very good property in quantum information theory, and usually cannot
be satisfied.

Proposition 5. f(t) = logt is operator on (0,00). f(t) = L operator on [0, o).

~ logt
o . ta_l tOé_l . .
Proof. logt = lim, o+ T,lthen by ~—— is operator monotone we conclude logt is also operator
monotone. Moreover, lt;l = [ tAdA O
ogt 0

Remark 6. tlogt is not operator monotone.

3log 3
Alog A = (2 2 310g§> ? Blog B =0, sinceB= (

1 1

D[ D0 [ =
DD [ =

) is a projection. (2.1.22)

Remark 7. In general, the function taking the form

F(t) = at+b+ /0 N ti—adm) (2.1.23)

is operator monotone on [0, 00). Here, (1(\) is a positive Borel measure.

+ B2

Proposition 6. Let A, B be Hermitian matrices. Then we have, (A;“B )2 < A2 5

Proof.

2 2 2
(A;B) S14—12-3 o A2 AB-BA+B’>0& (A—B)?>0. (2.1.24)
]

Definition 2.1.4 (Operator convex). Suppose f : Dom(f) C R — R is a function where Dom is an
interval. We say that f is operator convex, if for any Hermitian matrices A, B with Sp(A),Sp(B) C
Dom( f), we have

FOAA+ (1 =XNB) <Af(A)+(1=Nf(B), Yrxe]|o,1]. (2.1.25)
Theorem 2.1.5. The following functions are operator convex:
* the function t* on (0,00), o € [—1,0);
* the function t* on [0, 00), a € [1,2];
* the function —t® on [0, 00), a € [0, 1];

e the function t* on (—oo, o).
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Proof. Step 1. We prove that for A, B > 0, A71J2“371 > (AgB)_l. We consider

-1 -1
A1/2A “2‘3 AV2 % (] + A1/2B—1A1/2) 7 (2.1.26)
-1 . _ -1
gz (AEBNT i _ (I+ATZBATE (2.1.27)
5 5 : 1.
Denote X = AY/2B71X'/2 > (), then we only need to prove
1+X _ (14X 1\ 1+X\' _1+x!
L e S T T (Suiti S B e S (2.1.28)
2 2 2 2

This follows readily by the convexity of ¢~ on (0, c0).
Step 2. By eq. (2.1.18) and the convexity of the function ¢ — +-, we have t* o € (—1,0) is

P
operator convex. By eq. (2.1.9) and the convexity of the functlon t— m, we have —t*, « € (0,1) is
operator convex. By eq. (2.1.17) and the convexity of ¢ — < —i— /\i‘t for a € (1,2).
Step 3. For o = 0, note that
PRange(a) = lim AY™. (2.1.29)

m—r0o0

Therefore —t° is operator convex (but not strictly operator convex, for example, consider B = 24). [

Corollary 1. The function f(t) = logt on (0, 00) is operator concave.
The function f(t) = tlogt on [0, 00) is operator convex.
The function f(t) = =L on [0, 00) is operator concave.

logt
Proof.

tr—1 t—1 !
logt = lim o '(t* —1), tlogt= lim :/ tr*dA. (2.1.30)
a—0+ a=l+ a— 1" logt 0

]

2.2 Non-commutative Jensen inequality

Is there any relation between operator concavity and operator monotonicity? This leads to a quite pro-
found result: non-commutative Jensen inequality.

Proposition 7 (Sherman-Davis). Suppose f : Dom(f) — R is an operator convex function, then for any
n € Nand A € M,,(C) Hermitian with Sp(A) C Dom(f) and some projection P € M,,(C), we have

Pf(PAP + s(1 — P))P < Pf(A)P. (2.2.1)
Here, s € Dom(f)

Remark 8. Note that in the definition of operator convexity, we already assume that Dom(f) is an
interval in R, which ensures that Sp(PAP)\{0} C Dom(f) by the fact that Sp(A) C Dom(f) and
Cauchy interlace theorem.

We add the term s(1 — P) because we likely have 0 € Sp(PAP) but 0 ¢ Dom(f). To deal with
this and maximize the generality of our result, we add this term to ensure that Sp(PAP + s(1 — P)) C
Dom( f), since we note that for any = € ker P,

(PAP+s(1—P))z =0+ sz —0=sz, s& Dom(f). (2.2.2)
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Proof. Consider A= A , U = P P (note that this is a very common strategy to
A I-P P
truct it trix), and U, = [—p =P
construct a unitary matrix), a 1= P I_p)

Since U and U are unitary, therefore

—  [PAP+(I—P)A(I—P) (P—I)AP + PA(I - P)
vAUT = ((I _P)AP+PA(P—1) (I—P)A(I-P)+ PAP)’ (2.23)
. (PAP+(I—P)A(I—P) (P—I)AP+ PA(P —1I)
UL AUL = ((P — AP+ PA(I — P) (I — P)A(I — P)+ PAP)’ (2.24)
and then
%(UA’U* +ULAU?) = diag(PAP + (I — P)A(I — P), PAP + (I — PYA(I - P)).  (2.2.5)

By functional calculus and the convexity of f, we have
1, ~ ~ 1 ~ ~
f [i(UAU* + ULAUI)] < 3 [Uf(A)U* + UL f(A)UT|. (2.2.6)
We take the (1, 1)-block
f(PAP+ (I — P)A(I— P)) < Pf(A)P+ (I —P)f(A)(I — P). (2.2.7)
Hence we have

Pf(PAP +s(I — P))P < Pf(A)P. (2.2.8)

Remark 9. A very straightforward understanding is to consider the “matrix form” of PAP + (I —
P)A(I — P), which is “block-diagonalized” under the basis of RangeP and its orthogonal complement.
In this case we solely need to consider the (1,1)-block. The rest (2, 2)-block is irrelevant to the inequality
and we can write in a quite general form (replacing (I — P)A(I — P) by s(I — P)), which is also well-
defined because s € Dom( f).

O

Proposition 8. Suppose f : Dom(f) — R is a function, where Dom(f) is an interval in R. If for
any n € N, Hermitian matrices A € M, (C) with Sp(A) C Dom(f) and projection P, the inequality
Pf(PAP + s(I — P))P < Pf(A)P holds for any s € Dom(f), then f must be operator convex.

Proof. We take A, B € M,,(C) Hermitian, X € [0, 1] along with

~ (A (1 (VM VT
A‘( B>’ P‘( ) U‘(ﬂ] VI ) (2.29)
We compute
~ (M+(1-NB *
UAU* = ( . (1 —)\)A+)\B)' (2.2.10)

By our assumption, we have

Pf(PUAU*P + s(I — P))P < PUf(A)U*P, (2.2.11)
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Note that

P(UAU*P = (M +(1-N)B ) 2.2.12)
HPUAT)P 1 s — P)) = (f()\A+ (1-\)B) f(S)I) (2.2.13)
PF(P(UAU*)P+s(I—P))P = (f(AA +(1=XB) ) PU(A)U*P = (Af(A) + (1= X/(B)
(2.2.14)

We read the (1, 1)-block, yielding
FOAA+ (1 —=MNB) < Af(A)+ (1 =N f(B). (2.2.15)
Therefore f is operator convex. 0

Remark 10. This proposition gives a much more simplified characterization of the operator convexity.

In fact, we can extend the Sherman-Davis inequality to the case of partial isometries, which corre-
sponds to a slightly different truncation approach compared to the case of projection.

Proposition 9 (Sherman-Davis). Suppose f : Dom(f) — R is an operator convex function, then for any
n € Nand A € M,(C) Hermitian with Sp(A) C Dom(f) and some partial isometry V- € M, (C), we
have

VV*f(VAV +s(1 - VV ) VV* <V f(A)V*. (2.2.16)

Here, s € Dom( f).

Remark 11. We say V is a partial isometry iff VV'* and V*V are both projections.

Proof. Totally similar to Proposition 7. We take A = (4 ,)and U = ( 17‘/|'V| 17‘%/”) (V = Q|V]| for
some unitary ()) and V| is defined s.t. VV* + V| V[ = I. Then we do the same calculation. O

Theorem 2.2.1 (Noncommutative Jensen Inequality). Suppose f : Dom(f) — R is an operator convex
function on some interval in R, Ay, --- , A, € M,,(C) are Hermitian such that Sp(A;) C Dom(f), and
Vi, Vin € M, (C) such that Z;”zl ViV = I, then

f <Z V;*Ajvj) <Y VA 22.17)
j=1 Jj=1

Remark 12. Do not require each V; to be a partial isometry. This is very useful in quantum information
theory.

Proof. We take

Vi Vo
- 0 --- 0 A
v=|. . .| A= : (22.18)
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Note that V is a partial isometry, therefore by Proposition 9, we have

VV*F(VAV* + s(1 — VV*) < V(A V" (2.2.19)
Computing each side, we obtain
ie.
f <Z V;*Ajvj) <> VA (2.2.21)
j=1 Jj=1
[

Remark 13. This theorem formally resembles the classical Jensen inequality. Moreover, by the charac-
terization Proposition 8, the Jensen inequality implies operator convexity.

By previous results, we use the additive term to deal with the case where 0 € Dom( f). Next we will
explore another different way to understand the 0 € Dom( f) case.

Theorem 2.2.2. 0 € Dom(f) is an interval, then TFAE:
o [ is operator convex and f(0) < 0;

e Foranyn € N, X € M,(C) with || X|| < 1 and Hermitian matrix A € M, (C) with Sp(A) C
Dom( f), the following inequality holds:

FIXTAX) < X f(A)X. (2.2.22)

This inequality is sometimes also called noncommutative Jensen inequality.

Proof. =: Let

EZ<A 0)’ UZ((I—;?;X)W ([_f()?i*)w)’ V:<—<I —);*X)“? _U_;X*)m)

(2.2.23)

Remark 14. In quantum algorithm community, the construction of U is a very good example of “block-
encoding” of X. The condition || X|| < 1 is necessary.

For simplicity, we let Y = (I — X X*)/2. By operator convexity

(2.2.24)

; (U*A’U + v*A’v) _ JWUrAU) + f(V*AV)
2 = 2 '

The left hand side is diag(f(X*AX), f(Y AY")). The right hand side is

%U*(f(fl) f(O)I)U+%V*<f<A) f(O)I)V %U*(f(fl) O>U+%V*(f(f1) o)v

IA

)
(2.2.25)
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We read the (1, 1)-block, this implies that f(X*AX) < X*f(A)X.
<«: Suppose A, B € M,,(C) are Hermitian and 0 < A < 1. Let

- (A 10 VA —V/T=)
A= P= = . 2.2.26
(Mo =) oo (i R e
Then it is totally the same as Proposition 8. [

Corollary 2. Same assumptions, TFAE
e f is operator convex and f(0) < 0,

* Forany n € N, Hermitian matrices A; with Sp(A;) C Dom(f), and Vj s.t. 3700 V>V < 1, we

have
(Z VA, v) > ViHA); (2.2.27)
7j=1

Corollary 3. Let A > 0, X € M,(C), < [0, 1], then

X*A"X < (X*AX)". (2.2.28)

Proof. t*, a € (0, 1] is an operator concave function and f(0) = 0, then it follows from Theorem 2.2.2.
Then let « — 0. ]

Proposition 10. f : [0,0) — R, b > 0, then TFAE:
o fis operator convex and f(0) < 0;
* fo is operator convex and f(0%) < f(0) < 0. Here

_ f(t), t € (0,b), 599
folt) {f(0+)=hmHo+f(t), t=0 R

Proof. =: 1t is obvious that fy is operator convex on (0,b). By Lowner’s theorem, f € C?(0,b),
therefore fj is operator convex on [0, b). Moreover

F(04) = Tim £(t) < limsup LS F(O1) £ /(0)

t—0+ t—0t 2 2

= f(0%) < £(0). (2.2.30)

<: By the characterization of operator convexity in Proposition 8, we need to verify that VP €
M,,(C) projection, A > 0, we have f(PAP) < Pf(A)P. By the operator convexity of f;, we have
fo(PAP) < Pfy(A)P. Note that

F(PAP) = fo(PAP) + [£(0) — f0(0)] Peer(pap), (2.2.31)
f(A) = fo(A) + [f(0) = fo(0)] Prer , (2.2.32)
PfA)P = Pfo(A)P +[f(0) = fo(0)] P Beer a P (2.2.33)

We note that fo(PAP) = P fo(PAP)P and

Pker(PAP) = PPker(PAP)P + (I - P)Pker(PAP) (I - P) (2234)
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= [f(0) = fo(0)] Peer(pary = [f(0) = fo(O)]P Peerpary P + [f(0) = fo(0)](I = P)Per(pap)(I — P)
< [f(0) = fo(0)]PPrer(papy P + f(O)(I — P)Per(pap)(I — P)
< [£(0) = fo(0)]PRex(paryP + f(0)(I — P)I(I — P)
= [f(0) = fo(0)]PPer(paryP + (I — P) f(0).

(2.2.35)
Therefore we have

fF(PAP) < fo(PAP)+[f(0)=fo(0)]P Pier(pary P+(I=P) f(0) < fo(PAP)+[f(0)—= fo(0)] P Pecr(par) P

(2.2.36)
The last inequality follows from f(0) < 0. Comparing with eq. (2.2.33) and noting fo(PAP) <
P fo(A)P, it only remains to show that [f(0) — fo(0)|PPier(papyP < [f(0) — fo(0)]PPrer aP. Since
fo(0) = f(0%) < £(0), we only need to verify P Per(pap)P’ < PPier 4 P. By Corollary 3 we have

PRange(PAP) > PPRange(A)P7 (2237)

ie.
P — PPker(PAP)P 2 P — PPkerAP = PPker(PAP)P S PPkerAP' (2238)
]

Proposition 11. Ler f : [0,b) — R, b > 0, then TFAE:

* [ is operator concave and f(0) < 0;

. @ is operator monotonic on (0,b).

Proof. =:Let0 < A < B, X := B~'/2A, then by the operator convexity of f, we have
f(X*BX) < X*f(B)X = f(A) < X*f(B)X = AY?B~Y2f(B)B~1/2A"/2, (2.2.39)
Therefore
ATV2f(A)AY? < B7Y2f(B)BY? = A7'f(A) < B~'f(B). (2.2.40)

=L (tt) is operator monotonic = f is continuous. We need to show that for P € M, (C) a projection,
A € M, (C) Hermite,
f(PAP) < Pf(A)P. (2.2.41)

Take P. = P+ e(l — P), A. = A+ €l. Then for € > 0 sufficiently small, P. < 1, A, is invertible and
therefore
APP.AY? < A, (2.2.42)

We denote h(t) = f(t)/t, then by operator monotonicity, we have
h(AY?P.AY?) < h(A.) = P.AYPh(AY?P.AY?)P.AY? < P.AY?h(A.)P.AY>. (2.2.43)
By polar decomposition, X = R|X|, we have

Xh(X*X)X* = R|IX|h(|X|*)|X|R* = Rh(|X|*)|X’R* = h(R|X|’R*)R|X|*R* = h(XX*") X X*.
(2.2.44)
= f(P.A:P.) < P.f(A.)P.. (2.2.45)
We take ¢ — 0 and by the continuity of f, we conclude that fo(PAP) < Pfo(A)P. Therefore f; is
operator convex. By Proposition 10, f is operator convex. 0
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Remark 15. From this we can easily see that f(t) = f*(a > 2) is not operator convex since otherwise,

£
t
Theorem 2.2.3. f : [0,00) — [0,00), then TFAE:

* fis operator concave;

* [ is operator monotonic.

Lemma 3. A, C are positive semidefinite matrices, A is invertible and B € M,,(C), then

Proof. We first note that

A BY_(A B\ (0 0 .-
B* ¢)~ \B" B'A"'B 0 C—B*A'B) ="

|
o
&

Proof of Theorem 2.2.3. =: Wetake 0 < A < B, A € (0,1):

1 A

FOAB) = f <)\A +(1-N——(B- A)) > Af(A) + (1= \)f (—(B - A)) .

1—A 1—A

This inequality follows from the operator concavity of f. Let A — 0, we have
fo(B) > fo(A).

Moreover, since fo(A) < fo(B), Peera > Prer s, f(0) — f(0%) <0, we have

F(A) = fo(A) + [£(0) = fF(07)]Piera < fo(B) + [f(0) — f(07)] Peer s = f(B).

Therefore,

f(A) < f(B).

is operator monotonic. But t®~! is definitely not operator monotonic, which is a contradiction.

(2.2.46)

(2.2.47)

(2.2.48)

(2.2.49)

(2.2.50)

(2.2.51)

(2.2.52)

(2.2.53)

<: We need to show that for A Hermitian, X € M, (C), || X|| <1, we have f(X*AX) < X*f(A)X.

We take

A= (A 0)’ V- ((1_)‘?‘;)()1/2 ([_i?i*)m)'

(2.2.54)
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Then we have . .
U AU = (X fX *) U (AU = (X / iA)X *) (2.2.55)

* k

We take

~ (XAX+5[ 0)7 (2.2.56)

B = 0 ~I

then when ~ is large enough, we have B> U*AU by Lemma 3. Then by the operator monoticity of f,
we have

f(B) > U f(A)U. (2.2.57)
We read the (1, 1)-block, we have
FIX*AX +el) > X*f(A)X. (2.2.58)
We take ¢ — 0, we have
Fo(XTAX) > X" fo(A)X. (2.2.59)
Therefore f is operator concave and f(0%) > f(0) > 0, and by Proposition 10, f is operator concave.
O
Proposition 12. f : (0,00) — (0,00), then TFAE:
* f is operator monotonic;
* t/f(t) is operator monotonic;
* [ is operator concave.
Proof. Use Theorem 2.2.3 and Proposition 11 repeatly. [

2.3 Operator mean-value inequalities

We denote the set of n x n Hermitian matrices by H,,. We denote the set of positive definite matrices by
H>O.

Definition 2.3.1 (Harmonic mean). For A, B € M, (C) positive definite (to ensure that it is well-defined),

the harmonic mean of A and B is defined as

(2.3.1)

Al B\ !
o m (R

We can easily verify that:
M_,(A,B) =2B(B+A)"'A=2A(A+ B)'B. (2.3.2)

Theorem 2.3.2 (Ando’s variational formula (for harmonic mean)). Let A, B > 0, then

A 0 1/X X
sup {X e H, : (0 B) > §<X X)} = M_,(A,B). (2.3.3)
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0 B)~2\X X 11
11 -1 (A _1(A+B A-B
U_§(1 1)’ U( B)U_§<A—B A+B)'
(X X\, (0 0
o (x )r= (0 o)

A+B A-B > 0 0
A—-B A+B) = \0 2X)°

) >0 «<— C>B*A"'B.

Proof. Let X s.t. <A 0) > l<X X) (Note that RHS = %X ® (1 1) ). We take

Moreover

Therefore we have

A B
Recall. ( B C

Hence
A+B—-2X>(A-B)(A+B)"'(A-DB).
We calculate the right hand side:

27

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(A-BYA+B) " (A-B)=A(A+B)'"A-B(A+B) '"A-AA+B)"'B+B(A+B)'B

= A(A+B)'A+B(A+B)"'B—-2M_,(A,B).

And note that

A+B=(A+B)(A+B) " (A+B)=A(A+B)'"A+ B(A+ B)'B+2M_,(A, B).

Therefore we have
A+B—-2X >A+B—4M_1(A, B),

1.e.
X < M_4(A,B).

Another Proof. (61 g) > %(i(( ﬁ) is equivalent to

I 1/A1/2 X X\ /[A1/?
()=t )G )" e

We use the argument of spectral radius to “flip” the inequality, obtaining

(R A I D=6

We do the some calculations and obtain

1(@(A1+Bl)\/y \/Y(Al—Bl)\/Y) _ (I o)
VXA —B WX VXA '+BYHYX)—\0 I)

We define C' := %\/X(A_l + B~V X, then we have C*C' < 1 = C < I,i.e.

%\/X(A—l + B YVX <I= X <M_(AB).

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)
]

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)
[l
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Drawing from the another proof, we can generalize the Ando’s variational formula to

Proposition 13 (m-variables Ando’s variational formula). Let Ay,--- , A,, > 0, then
X X .. X
Al - 0 1
11X X -+ X A7l oo At
sup{ X € H, : > . . _ :( Lt m) . (2.3.16)
0o .- A L m
m X X .. X

Definition 2.3.3 (Joint convexity). f: X; X Xo — Y, if for A € [0,1], x1,y1 € X1, 2o, y2 € Xa, we have
FOx1+ (1= Nyi, Azg + (1 = A)yz) < Af(@1,22) + (1= A) f(y1, v2), (2.3.17)

then we say f is joint convex.

Proposition 14. The mapping (A, B) — B* A~ B is joint concave on H.° x M,,(C).

Proof. We take A1, Ay > 0, By, By € M,(C), A € [0, 1]. We have

Al Bl AQ BZ
A(BT BfAlel) +(1=2) (Bé‘ B;‘A;lBg) > 0. (2.3.18)

Therefore
AB{AT'Bi+ (1= N BsA; By > (M B+ (1= XN B3) (A + (1= A9) Y (AB + (1= M) By). (2.3.19)
Therefore, the mapping is joint concave. 0

Remark 16. This is a very important and classical example of joint concavity. It is closely related to the
(generalized) Lieb’s concavity, as we may see later in section 3.7.

Proposition 15. M_ is joint concave on H° x H>°.

Proof. Take Ay, As > 0, By, By > 0, A € [0, 1]. We have

%[M_l(Al,Bl)@@ G m 2 {M_l(AQ,BQ)@@ G D]

(Ando’s variational formula) Al A2 B )\Al + (1 — )\)AZ
= A( BJ*“‘A)( BQ)_< ABi+ (1= \)By)

(2.3.20)
= M_1(AM; 4+ (1 = A)Ag, ABy + (1 = A)Bs) > AM_(A1, By) + (1 = AM_1(As, By).  (2.3221)

The last inequality follows from the Ando’s variational formula Theorem 2.3.2 again (i.e. M_; is the
maximizer of the variational formula). Therefore, M _; is joint concave. O]

Proposition 16. M _; is operator monotone with respect to each component on H>° x H>°.

Proof. Let A; < Aj be two positive definite matrices, then

1(M_4(A;,B) M_1(A4,B) A0 Ay O
_ < <
2 (M_l(Al,B) M_l(Al,B) - 0 B/ — 0 B/ (2322)
By the Ando’s variational formula, we have
M_1(As, B) > M_1(A4, B). (2.3.23)

]
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Remark 17. We can see that the results for harmonic mean are very clean and elegant. In fact, the har-
monic mean can be viewed as some “projection” from M, (C) @ My(C) to M, (C) along the “direction”

of (1 D

Next we will introduce the geometric mean. At first glance, the geometric mean is not as clean as the
harmonic mean, but we will see later that this definition is reasonable and natural.

Definition 2.3.4 (Geometric mean). For A, B € M, (C) positive definite, the geometric mean of A and
B is defined as
My(A, B) := AV2(A7V2BA2)12 412, (2.3.24)

Similar to the case of harmonic mean, we also have the Ando’s variational formula for geometric
mean.

Theorem 2.3.5 (Ando’s variational formula (for geometric mean)). Let A, B > 0, then

sup {X e H, : (61 g) > —(g( )g)} = My(A, B). (2.3.25)

Proof. We take X s.t. (£ %) > 0. Therefore we have
B> X*A'X = XA'X. (2.3.26)
Consider A~Y2BA~Y2 we have
ATYPBATY? > (ATYVRX AT (AT X ATV, (2.3.27)
Therefore, by the operator monotonicity of ¢ — /2, we have
ATV2X ATY?2 < (A7Y2BATY2)1/2 = The original equality holds. (2.3.28)
O

Remark 18. We can also use the Ando’s variational formula for geometric mean to show that M, is joint
concave by putting M, on the off-diagonal block.

Proposition 17. * M, is joint concave;
o (symmetric) My(B, A) = My(A, B);
* For any invertible matrix D, My(D*AD, D*BD) = D*My(A, B)D;
* My is operator monotone with respect to each component.

¢ Mfl(A7 B) < MO(A7 B) < AJFTB

Proof. * By the Ando’s variational formula, we have
Al MO(Al Bl)) ( A2 M(](AQ Bz)>
A ’ 1—A ’ > 0. 2.3.29
(MO(AL By) By * ) My(Asz, By) By o ( )
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This holds because the variational formula implies that each additive term is positive semidefinite.
That is to say

A+ (1= A)Ay Mo(AA1 + (1 = A)Ag, AB1 + (1 — A\) By)

> 0.

(2.3.30)
By the Ando’s variational formula again (the geometric mean maximizes the 2 by 2 block matrix),
we have

Moy(AA; + (1 = M)A, ABy + (1 — M) By) > AMy(Ay, By) + (1 — A\)My(As, Bs).  (2.3.31)

e We consider X = (? é), then

A My(A, B) B B My(A, B)
X(MO(A, B) B )X = (MO(A, B) A > 0. (2.3.32)
By the Ando’s variational formula, we have
symmetricall
Mo(B,A) > Mo(A,B) > My(B,A) = My(B,A)=My(A B). (2333

* We compute

<D* D*) (Moé 5 g B)> (D D) - (D*Afo*(ﬁ,DB)D D*Aﬁ’fgbB)D) =0

(2.3.34)
Therefore
My(D*AD,D*BD) > D*My(A, B)D. (2.3.35)

Moreover, we use eq. (2.3.35) again
My(A, B) = My(D*(D*AD)D~*, D"*(D*BD)D™') > D™*My(D*AD, D*BD)D™".

(2.3.36)
Plugging it back to eq. (2.3.35), we obtain

Mo(D*AD, D*BD) > D*My(A, B)D > D*D~*My(D*AD, D*BD)D~'D
— My(D*AD, D*BD) = M,(D*AD, D* BD) = D*My(A, B)D.

(2.3.37)
* Note that
(o 473 D)) s
Therefore, by the maximization condition of the variational formula, we have
My(As, B) > My(Aq, B). (2.3.39)

By symmetry, we have M is operator monotone with respect to each component.
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» We take X = A~/2BA~1/2, then by

1 —1\ —1
1+t §t1/2§1+t:> 14+ X §X1/2§ﬂ, (2.3.40)
2 2 2 2
we conclude that the original inequality holds.
O

We next present a very profound application of the geometric mean—Ando’s convexity.

Theorem 2.3.6 (Ando’s convexity). 0 < p,r < 1, p+1r > 1, then

(A,B) —» AP @ B" (2.3.41)
is joint concave on H>° x H>°.
Proof. * We take A = {(p,r) : AP ® B" is joint concave}. We have (0, 0), (1,0), (0,1) € A.

» We next show that A is a convex set. We take (p1,71), (p2, 72) € A, we need to verify that (p,r) :=
(I%, %) € A. By the commutative of tensor product and the definition of geometric mean,
we have . »

APQ B =A 7" @B 7 = My(A" ® B, A” ® B"™). (2.3.42)

* We take Ay, Ay > 0, By, By > 0, then by (p;, ;) € A, we have

Ay + AN\ B+ B\" _ 1 _ _ . .
(%) & (%) > (AN@ B + AL @ BY), i=12 (2.3.43)

Therefore,
A+ A,y p® B+ By\"
2 2
Ay 4+ AN\ By + B\ A+ A\ P2 By + B3\ "™
= ((5) e (P57) (M) e (M)

monotonicity of]\éo and eq. (2.3.42) MO (All?l ® BIl + A;gl Q B;& Azlﬂz R BI2 + AIQD ® Bgz) (2344)
2 ’ 2

joint concavity of My ] . r 1 r r
> S Mo(AT" @ BY', AT* @ Bi*) + 5 Mo(A3' © By', Ay @ By?)
— (e B+ A0 B)).

Thus (p,r) € A.
Corollary 4. 0 < py,--- ,p, <1, 3770 pj < 1, then

(A, -+ A —» A @ - @ AP (2.3.45)

is joint concave on H>° x - - - x H>°.
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Next we explore the “geometric description” of the geometric mean.

Lemma 4.
d'I’L
din '

1

A+tX) 7 = (1) (A +tX) 2 [(A+tX) 2 X(A+ tX) 2"(A+ tX) 2. (2.3.46)

[

Remark 19. More generally, we have

d d
dt(AJrX( N~ —(A+X(t))—lax(t)(A+X(t))—1. (2.3.47)
Theorem 2.3.7. Let f be a continuous differentiable function, X is a Hermitian matrix, Sp(A) C
Dom(f), A = diag(t1,- -+ ,t,), then L f(A+tX) = Do X, here
ft)—f(tr) L]
o= 4 7k, (2.3.48)
f'(t5), j=k.

Proof. Without loss of generality, we assume f is analytic. (Otherewise, we can use C' function to
approximate f (we can always take a compact set since Sp(A) is bounded)). We have

fA+tX) = / f(2)(2] — A—tX) 'dz. (2.3.49)

Here we take + efficiently large to enclose Dom(f), Sp(A) and Sp(A + tX). Then we have

—f(A+tX /f Yol —A—tX) ' X (2] — A—tX) 'dz
_ (L / f(2)wjn dz) _ (f )~ f (tk)xjk) (2.3.50)
2mi ), (2 —t;) (2 — tg) \<jh<n t; —ti 1<ik<n
= Do X.
]
Example 2. ¢t — X (t) a smooth path C H_°, then
d o d 1
T log X (t) = (X(t) +al)™! th(t) (X(t) + al) da. (2.3.51)
0
Proof. We note that the following integral equality holds, then it follows readily by Remark 19.
> 1 1
logt = / ( — —) da. (2.3.52)
0 a+l t+a
O]

Example 3. ¢t — X (t) a smooth path. Then

d

< exp(X (1)) = /O " exp(aX (1)) EtX(t)] exp((1 — )X (1))da. (2.3.53)
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Proof.

S L S 1 dX
=X, (/0 s'(1—s) st) WXJE)(’C j (2.3.54)

' = s (1 — )7 dX :
— X Xk
/z_:z IO I TR

]

Remark 20. The information encoded in the noncommutative exponential is much more than the com-
mutative case.

Example 4. Ler X > 0, Ox : M, (C) — M,(C), Dx(A) = [[7(X + A)FA(X + X)'d\. Then we can
write down the inverse of ®x explicitly:

1
DL (A) = /0 X*AX'*ds. (2.3.55)

Proof. We take A a self-adjoint matrix, then X + tA = exp(log(X + tA))

A= Lix i) = Lexpllog(x +14))

dt

t=0 t=0

/o exp(slog(X +tA)) {% log(X + tA)} exp((1 — s)log(X +tA))ds

t=0

d 3.
T log(X + tA)} X'#ds (2.3.56)

t=0

/ (X + M) AX + )x)ld)\} X'*ds
0

Similarly, A = & log(exp(X + tA)),_, = Px Py (A). O

With above results about matrix calculus, we are at the position to revisit the matrix geometric mean.
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Example 5. Define || Al|, := /Tr(A*A) the Hilbert-Schmidt norm. We consider the “generalized length

of curve”
’ 1 (d .
/ X (0] (5)((15)) X4 ar. (2.3.57)
a 2

We compute

1 (d —12 Iy =1y y—1 n—1y1y—1
(X ()] 2 EX(t) X2 || =Tr (X'X'X'X) =T (YY'Y'Y ). (2.3.58)
2

Here, we take Y (t) = D*X (t) D with D invertible. Inspired by this, we define:

Definition 2.3.8 (Distance). Let A > 0, B > 0, define

6(A, B) := min {/01 H[X(t)]—%x'(t)[X( )"z

Az X(0)= A, X(1) = B}. (2.3.59)

1

Here, we say H (X ()] 2X'(¢)[X(t)]"2|| is the speed of X (t) and we can denote
2

6(X):/01

for the simplicity of notation. Then the minimizer of 6(X) i.e. the X such that §(X) = 6(A, B) is called
the geodesic between A and B.

NI

X ()2 X ()X (1)

dt (2.3.60)

2

Proposition 18. If D is invertible, then 6(D*AD,D*BD) = §(A, B). In other words, the distance is
invariant under the congruent action.

Definition 2.3.9. To facilitate the calculation of 6(A, B), we denote

e H(t) := Hx(t) = log X (t), then we have X (t) = exp H(t), Moreover, according to example 2,
we have

GHO = [ X0+ A EXO O + 21y e
/ X(®) zt X(t)—%x'(t)X(t)—%—A)_i(g,zt)dx.
* In order to calculate HX(t)_%d)gtt)X(t)_% , e define
 : M,(C) = M,(C), ®(A) = OOO )\)—I(—(QZt) A)i(gzt)dx (23.62)

Remark 21. In fact ® is a quantum channel since it can be viewed as a “continuous analog” of

> Vj()V}, where Y7, VJTVJ = I. See example 6 below.

Example 6. For s >0, [;* oigrdh =

Proposition 19. Tr(®(A)) = Tr(A), ®(A)? < ®(A?).



2.3. OPERATOR MEAN-VALUE INEQUALITIES 35

Proof. example 6 = [~ 2_d)\ = I. Therefore,

0 MX(0)
< X2  X(t):
Tr(®(A)) =Tr| A dA | =Tr(A- 1) =Tr(A). 2.3.63
K((4) ( C A A ) s — . s
1 * 1
t? is operator convex, note that fooo % ( Aﬁ?(ﬁ)) d\ = I, then by the (“continuous version

of”’) noncommutative Jensen’s inequality, we have
D(A)? < d(A?). (2.3.64)
O]

Remark 22. These properties can also be seen from the perspetive of quantum channel. That is to say,

we can verify that ® is 2-positive = completely positive = completely positive and trace-preserving
(CPTP).

Example 7 (A lower bound of §(A, B)). We try to calculate and bound the speed. In fact,

by Proposition 19

1 = 1o (x-ixx )]

2.3.65
R BN by trace preserving 1ot ] ot 112 9 ( )
gTr[cb((X PX'X z))} < T[(XXXTIXX )] = 6(X)2
Therefore,
1
/ | H'(t)|l,dt < 6(A, B). (2.3.60)
0
By the triangular inequality of ||-||,, we have
1 1
‘/ H'(t)dt S/ | H'(t)|l,dt < 6(A, B). (2.3.67)
0 2 0
In other words,
Jlog B — log All, = [ H(1) — H(0)]l, < §(A, B). (23.68)

We will see that the minimum can actually be achieved. We begin with the commutative or classical
case.

Proposition 20. A, B > 0, AB = BA, then there exists unique constant-speed geodesic from A to B.

Proof. We take X (t) = A" B', then by A and B commute we have X'(¢) = log B — log A, therefore

HX—%X’X—%

= HA_%(logB —log A)B_%
2

, = |log B — log All,. (2.3.69)

That is to say X (¢) is a constant-speed geodesic from A to B. We assume there exists another constant-
speed geodesic Y'(t), then we have

/

Y3Y'Y s

dt = ||log B — log A]|,. (2.3.70)
2
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Therefore the equality holds in eq. (2.3.67), i.e. for Hy (t) = log Y (t) we have

/0 H{/(t)dt
(>

1 2\ 2 3
/ he(t)dt ) — / (Zm]k 2) dt (2.3.72)
k=110

J,k=1
Here we denote Hy (t) = (b (1))} ;-
By the equality condition of Cauchy-Schwarz inequality, we have h;y(t) is proportional to h; 4 (s) for
any t, s € [0, 1], therefore Hj (t) is a constant matrix, then

/||H’ )|yt (2.3.71)

i.e.

Hy(t) =tlogB+ (1 —t)log A, (Hy(0)=1logA, Hy(1)=logB). (2.3.73)

Therefore Y (t) = efv(® = A'*B! = X(t). O
Theorem 2.3.10. A, B > 0, then there exists a unique constant-speed geodesic from A to B.

X(t) = A7(A"2BA 2) A2 =: M!(A, B). (2.3.74)

X) = HbgA—%BA—%

(2.3.75)

2

Proof. We consider A — B+— [ — A"2BA"z, then by I commutes with A"2BA~% and the previous
Proposition 20, we have

S(I,A"3BA"%) = Hlog A"3BA™? —log 1” - Hlog A"3BA}
2

(2.3.76)
2

Moreover, it is realized using the constant-speed geodesic X (t) = (A_%BA_%)t. By the congruent-
invariant property Proposition 18 we have

5(A, B) = §(A3IA A3 (A" BA™3)A%) = Hlog A BAE (23.77)

2
which is achieved by X (t) = Az X (t)A2. By the uniqueness of X we have the uniqueness of X. O

Remark 23. This in fact gives another characterization of the geometric mean. That is, we have

My(A,B) = X (%) where X is the geodesic from A to B. In fact we can generlize this geometric

1
mean to from M3 (A, B) to M§'(A, B), see Definition 2.3.11.
The generalization of the geometric mean to three and more variables case is quite difficult. In fact it
has just been resolved in 2010s.
1 1

Definition 2.3.11. M (A, B) = A2 (A 2 BA~2)*Azs.

Proposition 21.
(1 —-a)A +aB ™' = M&(A,B) < (1 —a)A+aB. (2.3.78)

Remark 24. This is a very natural generalization of the equality M_,(A, B) < My(A, B) < AJ“TB.
Proof. Let X = A~2BA~2, recall the classical Young’s inequality, we have

(1—a)s+at > s, (2.3.79)

Thus we have
(1—a)+aX ' =X*<(1-a)Ad+aX. (2.3.80)
[

Remark 25. The phylosiphy is, we can usually reduce the problem to the commutative (classical) ase.
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2.4 The Schur product theorem
We define the Schur (or Hadamard) product of two matrices A, B € M,,(C) as

AoB= (aijbij) (241)

n
1,j=01>

which is the “entry-wise” product of two matrices.

The following lemma is vital in the proof of the Schur product theorem and many other results.
Basically, it provides a way to reduce this problem to the “tensor product in an extended space”, which
allows us to better understand the essence of the Schur product principle.

Lemma$S. Let A, B € M,(C), {v;}}_, being an O.N. basis of C", then
AoB=V*(A®B)V, V:C—=-C&®C, v;— v Quj, (2.4.2)
where V' is a partial isometry. Intuitively, this amounts to consider

CI,HB s alnB
A® B = : : , (2.4.3)
anlB s annB

and we only take the (i, j)-entry of each block, i.e. truncate this block matrix using V.

Proof. (V*(A® B)Vvj,v,) = ((A® B)(v;®@u;), Vo) = (Av; @ Buj, v, @ vk ) = (Av;, vg) (Buj, vg) =
ajkbjk = <(A 0] B)Uj, Uk>. []

Theorem 2.4.1 (Schur product theorem). A, B > (>)0, then Ao B > (>)0.

Proof.
AB>0=A®B>0=V(A®@B)V >0= AoB > 0. (2.4.4)
A>al,B>bl(a,b>0)= A®B > abl = V*(AQB)V > abV*V = AoB > ablol > 0. (2.4.5)
O]

Corollary 5. A o B is operator monotone with respect to each component.
Proposition 22. Let f be an analytic function with power series expansion
f(z)=cot+ecizd+ezr+-- (cg>0,¢,>0,---) (2.4.6)

with radius of convergence being R. If A > 0 and |aji| < R, then [f(a;i)]} = > 0.

Proof.

[f (@) ey = co(D) oy + 1A+ oA o At oo 4 A 4 - (2.4.7)
Note that each A°(¢ > 1) is positive by Theorem 2.4.1, and (1)”,_, is a projection thus is positive as
well, we conclude that [f(a;x)]} - > 0. O

Proposition 23. A,, Ay > 0, By, By € M,(C), then

(BTA;lBl> @) (B;A;lBQ) Z (Bl O BQ)*<A1 O A2>_1(B1 O BQ) (248)
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Proof. By Lemma 3 and Theorem 2.4.1 we have

Ai Bz Al Bl A2 BZ
(B; B;‘AilB) 0= (Bf BfAllBl) ° (B; B;A21Bz) =0 (2.4.9)
i.e.
Al 9 A2 Bl ©) BQ

(B’f o B BiA['Bio B;A;132> = 0. (2.4.10)

Therefore
(BfAT'By) o (ByA;'By) > (B o By)*(Ay 0 Ay) ™ (By o By). (2.4.11)
O

Corollary 6. A;7' o A;' > (A0 Ay) L.

Proposition 24. A, Ay, By, By > 0, then
o M_1(Ay,By) o M_1(As, Bs) <2M_1(A; 0 Ay, By 0 By);
o My(Ay, By) o My(Ay, By) < My(A; 0 Ay, By o Bs).

Proof. We only need to note that

[1(M_1(A1,Bl) M_l(Al,Bl)ﬂ . [1(M_1(A2,Bg) M_l(AQ,B2))1 < (A10A2 B OB>

2\ M_1(A1,B1) M_1(Ay, By) 2\ M_1(As, By) M_1(Ay, By)
2.4.12)
and
Ay My(Aq, By) A, My(Asz, By)
>0, 2.4.13
(MO(AhBl) By ° My(Asg, By) By - ( )
and then use the Ando’s variational formula. O]

Proposition 25 (Ando’s concavity). p,r € [0,1], p+ 17 < 1, then (A, B) — AP o B" is jointly concave
on H>Y x H>°,

Proof. (A, B) — AP o B" = V*(A? ® B")V. Then use the Ando’s concavity for tensor product (Theo-
rem 2.3.6). L

2.5 The absolute value of operators

We recall the results of polar decomposition

Proposition 26 (Polar decomposition). A € M, (C), then there exists a unitary V and a positive semidef-
inite matrix |Al, s.t. A= V|A|

Remark 26. The nonzero spectrum of |A| equals to the sqaure root of the nonzero spectrum of AA* or
A*A.

Definition 2.5.1. For A € M,(C), we define Re A = 42 and Im A = 454 Note that Re A and Im A
are both Hermitian.
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Example 8. Let V = (§§), [V|=(89), ReV =1(94), [V] <ReV.

Remark 27. This example implies that |V| > ReV does not hold for operator case like in scalar case
in general.

Proposition 27. A € M, (C), then there exists a unitary matrix W such that
1
ReA < é(ReA—l—Re]A\) < WHA|W. (2.5.1)

Proof.
Aj(Re A) = max min (Re Az, z)

dim V=j zeVNS

= max min %((Ax, z) + (Az, x))
= max min Re(U|A|z, x) (2.5.2)
< max min ||| A|z||
A (IAP)
= X (JA]).
We decompose ReA = A, —A_ (AL >0, A_ >0),|[ReA] = A, + A_ = j(ReA+|ReA|) = A,.

Therefore, Re A < A,. Moreover, A, takes only the positive part of the spectrum of Re A. Therefore,
we also have \; (A1) < A;(|A|). We diagonalize A, and |A| and find

XA X <YHA)Y = A, < (XYH)|A|(XY)". (2.5.3)

We let W = (XY™*)*, then by X, Y are both unitary we have W is unitary. Therefore we proved the right
inequality. For the left inequality, it is trivial since Re A < A,. [

Theorem 2.5.2. A, B € M,,(C), then there exists U,V unitary matrices, such that
|A+ B| < U|A|U* 4+ VI|B|V*. (2.5.4)

Remark 28. Note that this inequality is essentially different from the Weyl inequality for eigenvalues or
sigular values, since the Weyl inequality describes the spectral (local) information while this inequality
describes the operator (global) information. So it is hard to say which one is stronger.

This theorem can be generalized to the von Neumann algebra case.

Proof. By polar decomposition, we have A + B = W|A + B| for W unitary. Therefore

| A+ B|=W*"A+W*B. (2.5.5)
We take the real part of both sides, then we have
|A+ B|=ReW*A+ReW*B < U|W*A|U* + V|W*B|V*(U,V are unitary) = U|A|U* + V|B|V".

(2.5.6)
[l
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2.6 Exercise 11

Exercise 7. Suppose A € M,(C) is Hermitian, U € M,,(C) is unitary and f is a function on Sp(A).
Show that f(UAU*) =U f(A)U".

Proof. We consider f(z) = > p, axz", then we have

FA) =D apA*, fUAU") =) qUAU" =U Y a,A'U" = Uf(A)U". 2.6.1)
k=0

k=0 k=0

Exercise 8. Suppose A € M,,(C) is and f is a function on Sp(A*A). Show that
Af(A*A) = f(AAY)A. (2.6.2)
Proof. We consider the polar decomposition A = U|A| with U being a unitary matrix. Then we have
A*A = |A|UU|A| = |A]?, AA* = U|A||A|U* = U|A]*U*, (2.6.3)
therefore

LHS = U[A|f(|A]"), RHS = f(UIAPU")U|A| = US(|A]")U"U|A| = UJA|f(|A]") = LHS.

(2.6.4)
O
Exercise 9. Consider the a-log function f:
e —1
f@) = 1 , t€(0,00), a>0, a#l. (2.6.5)
—«

Determine for which o, the function f is operator monotone or operator convex.

Proof. Since for a € (1,2], wehave 1 —a € [-1,0) and fora € [0,1), 1 —a € (0, 1], by Theorem 2.1.2,
we have [ is operator monotone for o € (1, 2] and — f is operator monotone for « € [0, 1).

Similarly, by Theorem 2.1.5, we have f is operator convex for & € [—1, 0], —f is operator convex for
a € [0,1), and f is operator convex for v € (1,2]. O

Exercise 10. Show that the function f(t) = tant is operator monotone on (—7 /2, /2).

Proof. By the polar expansion of tan ¢ we have

- 1 nmw
tant = — te(—m/2,7/2). 2.6.6
" n:zoo{m—éwr—t ) L€ Gz 2656)
Then it follows by the operator monotonicity of ¢~1. [
Exercise 11. Show that
f(t)=—tlogt+ (t+1)log(t +1), te€][0,00) (2.6.7)

is operator monotone.
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Proof. In fact,
1
f(t) = / [1+ log(t + a)]da. (2.6.8)
0

Since log t is operator monotone on [0, c0) and ¢ € [0, o], we have f(t) is also operator monotone. [

Exercise 12. Show that f(t) = \/t? + 1 is not operator monotone on [0, o).

3 11
Proof. We consider A = (2 §), B = (i i) Then we have
4 2 2
V13 24v2  2-V2
= (2, s = (e wla) 269)
4 2 2
We have det(f(A) — f(B)) < 0, which means that f is not operator monotone. O

Exercise 13. Suppose that A, B € M, (C) are positive definite matrices, show that
(Alog A+ Blog B)(A + B) '(Alog A+ Blog B) < A(log A)* + B(log B)*. (2.6.10)
Hint: Apply the noncommutative Jensen Inequality.
Proof. Since A, B > 0, we can define
Va =AY (A+ B)™V2, Vy:= BY?(A+ B)"Y2 (2.6.11)
Then we have
ViVa+ ViV = (A+ B) V2AA+B) Y2+ (A+ B Y?B(A+ B) Y2 =1T. (2.6.12)
Note that f(¢) = ¢ is operator convex, we apply noncommutative Jensen inequality, obtaining
(Vilog AV + Vilog BV)? < Vi(log A)?Va + Vii(log B)*Vg. (2.6.13)
We compute

LHS = [(A + B)—1/2(A1/2(log A)Al/QBm(log B)BY2)(A + B)—1/2]2

2.6.14
= X"'(Alog A+ Blog B)(A+ B) '(Alog A+ Blog B) X! ( )

RHS = <A+ B)71/2A1/2(10gA)2A1/2(A+ B)il + (A + B)71/2Bl/2(logB)2Bl/2(A + B)fl
= X '(A(log A)* + B(log B)*) X *.

(2.6.15)

Here, we denote X := (A + B)~Y/2. It follows readily that
(Alog A+ Blog B)(A+ B) *(Alog A+ Blog B) < A(log A)? + B(log B). (2.6.16)
[

Exercise 14. Suppose that t1, - -- ,t, € R. Show that (cos(t; — ti))1<jk<n IS positive semidefinite.
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Proof. In fact this matrix is a Gram matrix with respect to the set {x;,--- , X, } of vectors where
x; = [ ot (2.6.17)
* \sint; )’ e
Then we have
(x;,xj) = cost;cost; +sint;sint; = cos(t; — t;). (2.6.18)
That is to say,
A= (cos(ti — tj))i<ij<n = ((Xis Xj) )1<ijcn, 1€ A= (Xi)]<icn(Xi)1<i<n = 0. (2.6.19)
O

Exercise 15. Suppose A € M, (C) is a contraction i.e. ||A|| < 1, show that for any n € N,

A > 0. (2.6.20)
Lo A
Am ... A I

Proof. We assume further that A is normal, then we can let {u;}7_, be a set of orthonormal basis of C"
that diagonalizes A:

A= Z Nujuy, AT = Z)\_]u]u;‘ (2.6.21)
j=1 j=1
Since [|A]| < 1, we have |);| < 1. We compute
I A% ... Am
A . n
. = M, () @ uu. (2.6.22)
: .. . A* =
Ao AT
Here we denote L .
PVEETEDY
Ma\)= | 7 | e M) (2.6.23)
AN ]
Note that
det M,,(N;) = (1= A\ [)™ 1 >0, YmeN. (2.6.24)

Therefore, by Sylvester’s criterion and |\;| < 1, we have M, (};) is positive semidefinite. It follows that
M,,();) ® uju; and then the whole matrix is positive semidefinite.
In fact, for general case, let .S be the matrix above and let

0 -+ - 0

T= . (2.6.25)
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We have
S=I1+T+ - +T"+T+-- +T"=I-T)'+(I-T)"' - L (2.6.26)
Now we see that for any v € C"™,
<SU,U> = <(I - T)_1U7U> + <<] - T*)_1U7'U> - <'va>
= (w, (1 =T)w) + (1 = Tw,w) = {1 = T)w, (1 = T)w) (2.6.27)
= ||w||* — | Tw]” = 0.
Here we denote w = (I — T))~'v. This indicates that S > 0. O

Exercise 16. Show that the map A — A~' @ A~ is operator convex on H°.

Proof. Suppose that Ay, Ay > 0, we need to show that

Al AN (AF AT AT @AY AT e A
—_ _— < . 2.6.2
(B37) o(257) <A Sh et (2.6.28)
We multiply A? ® A? on left and right sides of both sides of the inequality, we have
-3 -\ -3 -3\ 3 A-1 43 3 A—143
<I +4 2A2A1 > ® (I + 4 2A2A1 > < gjL Afdy Af ?Al Ay Aj _ (2.6.29)

1 1
Let X = A? A;' A? and let us consider the spectral decomposition of X, then it suffices to show that for

x,y > 0, we have
T+ N\ /14yt 1
( T > ( ty >§ Ty (2.6.30)

2 2 2

This is a simple inequality, we can compute directly. U
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Chapter 3

Trace Inequalities

3.1 The Hilbert-Schmidt inner product

Definition 3.1.1. We define the (trace) p-functional as

A, := Tr [(A* AP = Te(AP) . 3.1.1)
We note that in terms of singular values, we have in fact
n 1/p
| All, = (Z Uj(A)p> ;o 0i(A) =/ (A*A). (3.1.2)
j=1

From this, we can easily see that
14l = lAll, - and T [lA], = [|A]l. (3.1.3)

Definition 3.1.2. * (Hilbert-Schmidt inner product) For A,B € M,(C), we define the Hilbert-
Schmidt inner product as ( “mathematician’s notation”)

(A, B) =Tr(B*A). (3.1.4)
e Let p be a linear functional on M, (C), we say p is positive if p(A) > 0 forall A > 0.
* If a positive linear functional p satisfies p(1) = 1, we say p is a state.

* (density matrix) For any p a linear functional, by Riesz representation theorem applying to the H-S
inner product space, there exists a unique D, € M, (C) such that p(A) = Tr(D,A). If p is a state,
we have D, > 0, Tr D, = 1. In this case, we say D, is the density matrix of p.

Proposition 28.
Tr(BA)| < [[AIBI[;.- (3.1.5)

Proof.
ITr(BA)| = |Tr(V|B|A)| = |Tr(|B|AV)| = Tr(|B|AVe”)

1 i A 1 1
=3 IBlave? + (ave?))] < (|B1E 1 All51 ) (3.16)
= Te(|BI) Al = 1A B,
O

45
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Example 9 (Skew information). * pstate, D, density matrix, we define

XX + XX~

1 1
5 D,,) - Tr(X*DgXD,g), (3.1.7)

I(p, X) = %Tr([DE,X]*[DE,X]) _ Tr(

1 1 1 XX 4+ XX~ 1 1
J(p, X) = 5Tr<{D,§,X}*{Dg,X}) - Tr(+Dp> +Tr(X*D3XD3>. (3.1.8)

We say that I(p, X) is the skew information of the state p with respect to X. Sometimes we assume
that X is self-adjoint, i.e. X = X*. In this case, we can see that the first term is actually the

variance of the observable X.

* By Cauchy-Schwarz inequality, we have

T ([DF, XD} YY) < 2(/T(p, X) (5, V). (3.1.9)
LHS. = |T(X*D,Y) + Tr<X*D§YD§> - Tr<D§X*D§Y> - Tr<D§X*YD§Y>‘
= [T[(YX" = X*Y)D,]| = [p[X",Y]|. = 1(p,X)J(p,Y) > ;1|P[X*ay]|2-
(3.1.10)
 For the purpose of simplifying the notations, we denote
Clp, X) = Tr<X*D§XD§>. 3.1.11)

Then we have

Var,(X)Var,(Y) — C(p, X)C(p,Y)
= (0. X) + (YN0, Y) + T(0.Y)) = 310, X) = J(p, X))(I (0, X) = T(p. X))

= %I(p,X)J(p, Y)+ %I(p, Y)J(p, X)

1 * *
(3.1.12)

We say this inequality is the Heisenberg uncertainty relation.

3.2 Trace monotonicity
In this section, we ask the following general question:
Can we derive the trace inequalities related to monotonic functions?

Quite intuitively, we have the following simple result:

Proposition 29. Let f : Dom(f) — R be a non-decreasing function on some interval Dom(f). If A, B
Hermitian matrices such that A < B and Sp(A), Sp(B) C Dom(f), then Tr f(A) < Tr f(B).
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Proof. By A < B and the min-max theorem, we have \;(A) < \;(B) for all j and thus f()\;(A4)) <
f(A;(B)) for all j. Therefore, we have

Tef(A) = > S Ou(A) < 3 FO(B) = Ti £(B). G2.1)

O

In fact, we can derive a more refined result. We first examine the behavior of the differential of Tr f
function.

Theorem 3.2.1. Let f be a C" function, A is a Hermitian matrix with Sp(A) C Dom( f) with Dom( f)
being an open interval, then we have

iTrf(A—i—tX)

= = Tr(f(A)X). (3.2.2)

t=0

Proof. Letm € N, f(t) = t™, then we have

%Trf(A +tX) = ZTr{(A + tX)H%(A + tX)]

j=1
=Tr(X(A+tX)" "+ 4+ (A+tX)"'X) (3.2.3)
=Tr[m(A+tX)"'X] (by the cyclic property of trace)

= Tr(f'(A)X).

Therefore, for f € Clz], the conclusion holds. If f is C'', the conclusion also holds since we can always
approximate f by a polynomical function on a compact set. [

Remark 29. In fact, if additionally assume that f is C', we can derive Proposition 29 using Theo-

rem 3.2.1. In fact, we can define
h(t) .= f(tA+ (1 —t)B), (3.2.4)

then we have q
ah(t) = Tr(f'(tA+ (1 —t)B)(A—B)) <0, Vtelo1]. (3.2.5)
This is because f is increasing and f' is a positive-valued function. Moreover, A < B = A — B < 0.

Therefore $h(t) < 0. Thus we have

Tr(F(A)) = Te(f(B)) = h(1) — h(0) = /01 %h(t)dt <. (3.2.6)

Remark 30. Unfortunately, this result does not hold if we extend the trace to general state. That is to
say, in general we do not have

Te(X*f(A)X) < Te(X*f(B)X), VX € M,(C). (3.2.7)

Example 10. If0 < A < B, then Tr(A?) < Tr(B?) (p > 0).
If A < B, then Tr(eA) < Tr(eB).

We can see that the “trace monoticity” is easier to realize than the operator monoticity.
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3.3 Jensen trace inequality

Recall the operator convexity. The operator convexity in fact implies C?, which is much stronger than
the generic convexity. It is natural for us to ask whether we can derive some trace ineqaulities for general
convex functions. The answer is yes, and this is the Jensen trace inequality.

In fact, the trace inqualities related to convexity can be formulated in various ways. We begin with a
simple result called Peierls inequality:

Proposition 30 (Peierls inequality). f is a convex function, A is Hermitian, Sp(A) C Dom(f) and
{v;}j=, is a set of orthonormal basis of C", then we have

D F((Av,v;) < Tr f(A). 3.3.1)
Proof.
RHS =Y “(f(A);,vy). (3.3.2)

We take the spectral decomposition of A, here P, are orthogonal projection operators:

A=Y "NP, > P=1 (3.3.3)
k=1 k=1
Therefore
RHS =Y ) f ()| Prvy 1. (3.3.4)

j=1 k=1
Note that 37", || Pyv,]|* = [|v;]|> = 1, by the convexity of f, we have

n m

SN Pl = Zf (Z Aell Prvs | ) = Zf((Avj,vj>). (3.3.5)

j=1 k=1 J=1

]

Unlike the case for monoticity, for the convexity we can examine the behavior of Tr(X*f(A)X). In
fact, we only need to modify a little bit the proof of Proposition 30 to obtain the following result:

Proposition 31. Let f be a convex function, A is Hermitian, Sp(A) C Dom(f) and {v;}_, is a set of
orthonormal basis of C". Assume X € M, (C) and || X|| < 1, then we have

(AXv;, Xv;
ZH ﬂ\f(%)éi‘r()(*f(z‘l))(). (3.3.6)
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Proof.
HPkX ull”

sz ()| PeX vy —ZIIXUJH Zf W
J

7j=1 k=1

PX
>Z||Xv]|| f <ZA 1 UJH > (3.3.7)
1 X
(AXv;, Xv;)
— f 10 J ) .

O

We can also extend this result for general vector. The idea is to supplement the remaining part for
lo]] < 1.

Proposition 32. f is a convex function, 0 € Dom(f), f(0) < 0. A Hermitian, v € C" with |jv]| < 1,
then
f({Av,0)) < (f(A)v,v). (3.3.8)

Proof.
(F(A)v,v) = FOWIPeol* + FO)[L = [[o]*] = FO)L = [[o]]

m 3.3.9

> f Z)\kHPkUHz) — FO)[L = [lo]’] 5
= f(<A1),’U>)

[

We next derive three important results. These results can be viewed as the application of Proposi-
tion 30, Proposition 31 and Proposition 32 by taking trace.

Proposition 33. f is a convex function, A, B Hermitian, \ € [0, 1], then we have
Tr FOOA + (1 — \)B) < ATr f(A) + (1 — ) Tt £(B). (3.3.10)

Proof. We take v; as the eigenvectors of A\A + (1 — \)B, then we have

n

Tr fAA+ (1= N)B) = > _(f[(1 = ) B + AJv;,v;)

j=1
spectral decomposition Z F((AMA+ (1 — X\)Bo;,v;))
= (3.3.11)

fo (Avj,00) + (1= NS ((Buy, v;))

the convex1ty of f

Peierls (Proposmon 30)

ATr f(A) 4 (1 = X)) Tr f(B).
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Remark 31. We use two different convexity: (1) the trivial convexity of f; (2) the Peierls convexity of
f. In fact, Proposition 33 implies that the function A — Tr f(A) is operator convex if f is a convex
function.

Corollary 7.
A+ B\? _ Tr AP+ TrBP
T (25 AT as (3.3.12)
2 2
TreA + TreB
Tpes? < LTI (3.3.13)

2

Next we apply Proposition 31 to obtain the following Jensen trace inequality. 1t is formulated in the
way similar to the operator Jensen inequality Theorem 2.2.1.

Theorem 3.3.1 (Jensen trace inequality). Let f be a convex function, A; are Hermitian, V; € M, (C),
Z;”Zl ViV =1, then we have

Tr f (Z vj*Ajvj> < T (Vi F(A)). (3.3.14)
j=1 J=1
Proof. The proof is also similar to Theorem 2.2.1. We take
Vi 0 -+ 0
V, 0 --- 0 ~ Ay — ol
X=1. . . . |€MuC), A= € M,,,(C). (3.3.15)
V. 0 - 0 A — wol

Let f(z) = f(z + x9) — f(xo) for xg € Dom(f), then we have f is a convex function. We compute
X*AX = ((EH Vi AV mn 0) € My (C). (3.3.16)

We take the basis vectors with respect to the block matrix, i.e. {vj iy then we have

Vi 0 - 0 Vi 0 -+ 0
Vo 0 --- 0 Vo 0 -+ 0
HXBJH2:< . . .. : . . . : ej7€j>
™VEAV. 0 - 0
_< Z]—l .] VA . . . > (3317)
- . . . €j,€;
0 0 --- 0
I 0 --- 0 »
_< e, . 6‘6‘>—{17 ]_S.]Sn’
- : : . : 5y €j = )
00 --- 0 0, otherwise.

Therefore
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o Te(XF(A)X) = Te (S, V7 T4y = X0V ) = Tr( S0, Vi F(AV; = 20 ).
o S |1 X el f <%) = Y fUXFAX e, en)) = Sopy PO, Vi(Aj—aol) Vier, ex))
=Tr f(O 51,V AV; — x).
L]

Proposition 34. f convex, 0 € Dom(f), f(0) <0, {A;} Hermitian, Vi, - -, V,, € M, (C), 37", V'V; <
I, then we have

Tr f (Z vj*AjVj> < T (Vi F(A)). (3.3.18)
j=1 j=1
Proof. Let vy, be the eigenvectors of X*AX for some || X|| < 1, then we have

Tr f(X*AX) spectral deg)mposition Z f((X*AX’Uk, Uk>)

. h=t . (3.3.19)
Proposition 32 .
= f{AXw, Xu)) <D (F(A)X v, Xug) = Tr(X*f(A)X).
k=1 k=1
For general case, we can use the techniques of block matrices. 0

In the next two propositions, we will see that if we additionally assume that f is increasing, we can
derive even nicer results. The first one Proposition 35 in some sense achieves f(X*AX) < X*f(A)X
up to a unitary matrix and avoids taking the trace. The second one Proposition 36 is a majorization result.
It has a deep connection with the Gibbs state at different temperatures.

Proposition 35. f is a convex and increasing function, f(0) < 0 and X € M, (C), then there exists U a
unitary matrix, such that f(X*AX) < U*X*f(A)XU.

Proof. Since we want to derive the inequality up to unitary matrix, we can estimate the eigenvalues of
X*f(A)X. In fact,

M(XTf(A)X) = in max (X*f(A)Xwv,v)

= m
dim V=k—1 ||jv|]|=1,0eV

Proposition 32

>

in | mex  f({AXv, Xv))
T min f( max  (X*AXv,v)) (3.3.20)

dimV=k—1" |jv||=1,veV

mean-max again

S min fOW(X°AX))
= FOWXAX)) " A (£(XAX)),
Therefore, there exists a unitary matrix U such that f(X*AX) < U*X*f(A)XU. O
Proposition 36. f is increasing and convex function, f : [0,00) — [0,00), A > 0 and Tr A = 1, then
we have
T{F];?ll) = A. (3.3.21)

Here the notation > denotes majorization.
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Proof. Note that for 0 < a < b # 0 we have

a a a
_ — _ 1= 2 )b > — . =0. 3.
F(B)a— f(a)b = f(b)a— f (o (1 b) +b b) b= f(b)a— 5 f(B)b =0 (3.3.22)
Therefore, we have
TN > Nif(Ag), for j<k. (3.3.23)
Therefore
SO0+ Qi+ A) = (A + ) [ (Aga) -+ f(An)]- (3.3.24)
We add (A + -+ - + X)) [f (A1) + - - - + f(A,)] to both sides, we have
[fOAD)+ -+ fO)]TrA> (A 4+ X)) Tr f(A). (3.3.25)
Therefore ) O
1 + “ o + l
> ce <[<n. .
T /(A) >M+o+ N, VIZILZn (3.3.26)
Therefore T{ ;’?}4) majorizes A. ]
Remark 32. For two Gibbs states with different temperatures, we have
e BH e‘ﬁlH

V3 < 8. (3.3.27)

~
Tr(e=PH) = Tr(e F'H)’

This is because t°'/8 is convex for /3 > 1.

3.4 Klein inequality and relative entropy

Theorem 3.4.1. Let f be a C' and convex function, A, B are Hermitian matrices, then
Te((A - B)f(B)) < Te(f(A) — f(B)) < Tr((A — B)f'(A)). (34.1)

Proof. Let h(t) = Tr f(A+t(B — A)), then we have h(0) = Tr f(A), h(1) = Tr f(B).
By the Jensen trace inequality we have A — Tr f(A) is a convex map, therefore h(t) is a convex
function. Thus

h(t) < th(1) + (1 — )h(0) = h(li - g(o) > h(ti - g(o)) vt 0,1]. (3.4.2)
Therefore, by taking the limit ¢ — 0, we have
h'(0) < h(1) — h(0) = Te[f'(A)(B — A)] < Te(f(B) — f(A)). (3.4.3)

]

Definition 3.4.2 (Relative entropy). A, B are two density matrices, Prupge(B) < Prang(A), then we
define the relative entropy as

H(B||A) = Tr(Blog B — Blog A). (3.4.4)
We define the entropy of a density matrix A as
H(A) = —Tr(Alog A). (3.4.5)

Note that 0 is just a first-order pole of log x at 0. Therefore H(A) is well-defined even if A is singular.
Also, we know that tlog t is an operator convex function, therefore (-) is an operator concave mapping.
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From the definition of relative entropy, we can easily find that

Proposition 37. H(B||A) >0

Proof. f(t) = tlogt is convex, therefore Tr(Alog A — Blog B) < Tr((A — B)log A). O

In fact, we can show a stronger result. In fact, the Klein inequality is a first-order Taylor expansion
of f. We can in fact use the information of the second order derivative of f(z) = zlogx to derive the
following result, which is closely related to the trace distance.

In fact, we have the following result:

Theorem 3.4.3. fi, gi are functions on (a,b), A\, € R.If> 7" Ao fr(2)ge(y) > 0 for any z,y € (a,b).
Then for A, B Hermtian with Sp(A), Sp(B) C (a,b), we have

D A Te(fi(A)gr(B)) = 0. (3.4.6)

Proof. We apply the spectral decomposition of A and B:

A=>"a;P;, B=) bQn, Y P=1 > Q=1 (3.4.7)
j=1 k=1 j=1 =1

Therefore, by functional calculus via spectral decomposition, we have

Z)\k Tr(fr(A Z)\kfk a; gk<bl>Tr<P Q) = Z (Z A fi( a; gk(bl)) Tr(Ple) >0

kjl Jil
(3.4.8)
[

Example 11. For f(z) = xlogx, we have
F@) + FW) + (=) ) = 5 )" 0) > =y, rye 01 (349)

Here we use that f'(x) = 1+ logx and f"(x) = £ > 1 forz € (0,1).
Therefore, by Theorem 3.4.3, we have

Tr(Blog B — Blog A) > %Tr((A — B)?). (3.4.10)

Therefore
1 1
H(B||A) > 5Tr((A—B)2) = 5||B—A||§. (3.4.11)

Remark 33. If H(B||A) = 0, we can easily see that A = B. However, this is not that obvious if we only
know Proposition 37.
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Example 12 (Lieb’s convexity). We claim that
A, B — Tr(X*APX B") (3.4.12)
is jointly concave for 0 < p,r <1, p+r < 1.

We recall the Ando’s concavity, we have (A, B) — AP ® B" is jointly concave.
We take

E=) Ej®Ej;. (3.4.13)
gk=1
Then we can verify That
1
Tr(X*APXB") = — Tr(E(X* @ I) (A" @ (BT)")(X @ I)E). (3.4.14)
n

By Ando’s concavity, we have A, B — Tr(X*APX B") is jointly concave.
Theorem 3.4.4. The map (A, B) — H(B||A) is jointly convex on the set

{(A, B) : Prange(B) < Prange(A), A, B are density matrices}. (3.4.15)
Proof. Let

F(p) = Tr (AL + (1= N)A)P ABy + (1= \)Bo)'™P) = ATr (AB; ") — (1 - \) Tr (A5B,77)..
(3.4.16)
Here, A1, Ao, By, B, € H>? and p, A € [0, 1].
By Lieb’s concavity, we have f(p) > 0. Therefore f'(0) > 0 since f(0) = 0. This implies that

Tr (ABy + (1 — A\)Bz)log (M1 + (1 — XN)Ay)) — Tr (ABy + (1 — N\)Bs) log (AB; + (1 — M) By))
2/\ (Tl" (B1 10g Al) —Tr (Bl IOg Bl)) + (1 — )\) (TI‘ (BQ 10g Ag) —Tr (32 10g Bg))
(3.4.17)
Here we note that Tr ensures the commutative property when taking derivatives, thus f’(0) can be com-
puted using the similar way as in the classical case.
This indicates that H (B||A) is jointly convex on invertible density matrices. For general case, we can
approximate H (B||A) by invertible density matrices to see that it is still jointly convex. O

3.5 Peierls-Bogoliubov inequality and Gibbs variational principle
Next we want to explore the variational formula for relative entropy. In fact, these results are usu-
ally called (quantum) Gibbs variational principle. To prove these formulas, we first present the Peierls-
Bogoliubov inequality

Theorem 3.5.1 (Peierls-Bogoliubov). A, B are Hermitian, A € [0, 1], then we have

log Tr eM+A-NE < Nlog Tre? + (1 — ) log Tre?. (3.5.1)
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Proof. We use the similar technique like our proof of Tr f is convex (see Proposition 33). We take v, as
the normal eigenvectors of AA + (1 — ) B, then by spectral decomposition, we have

log Z(e)\A+(1f)\)ij’ ’Uj> = log (Z e([)\AJr(l/\B)]vj,vj}) = log Z eA(AUj,vj)+(1f/\)<ij,vj)' (3.5.2)

J J J

We should note that at this point we cannot directly apply the Peierls inequality Proposition 30 be-
cause the A term and (1 — \) term are not yet separated. However, we can use the convexity of log > ;€7
to separate them. In fact, we can define

YRR, (x)=log» e, ;R (3.5.3)
j=1

We can see that 1) is a convex function by calculating the Hessian matrix. In fact, through a tedious but
straightforward calculation, we can show that the Hessian matrix of ¢ is given by

evi

- Do € .

We can verify that H,(x) is positive semidefinite. Therefore, we can apply the convexity of ¢ to separate
the A and (1 — A) terms. We take x = ((Av;,v;))%_;, ¥y = ((Bvj,v;))7_,, then

Hy(x) = (hjk)j e, Pk = tj05 — tjte, 1 (3.5.4)

log Y~ MAuw =B ) = (Ax 4 (1 = N)y)
J

< AY(x) + (1= N(y)

3.5.5
= \log Z ol Avyv;) + (1 _ )\) log Z o{Bujvs) ( )
J J
Peierls Proposition 30
< Mog Tre? 4 (1 — \) log Tre®.
0

Remark 34. In this proof, we use to different convexity just like Proposition 33. The first one is the trivial
convexity of log > ; €', and the second one is the Peierls convexity.
We can also state Peierls-Bogoliubov inequality using logarithmic convexity, i.e.

Tr(eAAJr(l*)‘B)) < Tr(eA)l_/\ Tr(eB)/\. (3.5.6)

Next we want to derive the variational formula for relative entropy. We first give a quick corollary of
Theorem 3.5.1, which actually finds a lower bound of loge™4 — log e™ 5.

Proposition 38. Let A, B be Hermitian matrices, Then

TreAtB Ty (eBA)
TreB — TreB

log (3.5.7)

Proof. Let
h(t) = log TretAT(=98 ¢ ¢ [0, 1]. (3.5.8)
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Then h(1) = log Tre# and h(0) = log Tre®. By Theorem 3.5.1, we have A ~ log Tre” is operator
convex. Therefore, we have h(t) is convex. Thus we have
h(1) = h(0)  h(t) = h(0)

1-0 — t—=0

LHS = log Tre® — log Tre®. (3.5.10)

To calculate the right-hand side, we only need to calculate the derivative of A(t). In fact we should again

take the advantage of the trace in the sense that the part inside the trace is commutative. Therefore, we
have

vt € [0,1]. (3.5.9)

% Tr(etA+(17t)B) _ Tr(etAJr(lft)B(A _ B))

H(t) = Tr etAt(1-0)B Ty etA+(1—1)B (3.5.11)
Therefore
lin RHS = Tim (A =5) 35.12
(0t e Tr eB ’ (3.5.12)
Therefore we have B4
T - B
log Tr e — log Tre? > (e ). (3.5.13)
TreP
Replacing A by A + B, we yield the desired result. [
Theorem 3.5.2 (Gibbs variational principle). Let X be a Hermitian matrix, then
logTre® =  sup {Tr(XD)+ H(D)}. (3.5.14)

D density matrix

Proof. We take B = log D, A = X for any density matrix D and Hermitian matrix X, then by Proposi-
tion 38 we have

Tr(D(X —log D))
Ty elog D
To see that the supremum is achieved, we can take D = X / Tr eX. Then we have
eX eX eX eX eX
Tr(XD)+ H(D) = Tr(XTrGX) +H (TreX) = Tr(XTrex) — Tr(TreX log TreX>

eX e eX
=Tr( X —Tr( X + Tr log Tre® | =logTre™.
TreX

log Tre* > =Tr(XD)—Tr(Dlog D) = Tr(XD) + H(D). (3.5.15)

TreX TreX
(3.5.16)
Thus the equality holds when we take D as the Gibbs state. [l
Theorem 3.5.3 (Gibbs variational principle for entropy).
H(D) = inf. [log Tre™® — Tr(DX)] (3.5.17)
Proof. For any X € H", we have
H(D) <logTre® —TrDX. (3.5.18)
If we take X = log D, then
log Tre'*¢? — Tr(Dlog D) = — Tr(Dlog D). (3.5.19)

]
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Theorem 3.5.4 (Gibbs variational principle for relative entropy).
log TreX g4 — sup{Tr DX — H(D||A)}. (3.5.20)

— X+logA
H(D||A) Xlggm [log Tre TrDX]. (3.5.21)

Remark 35. From the results above, we can see that log Tr e (log Tr eX+1°84) s in fact the Legendre
transform of H(D) (H(D||A))
3.6 Trace Holder inequalities and Minkowski inequalities

Theorem 3.6.1. 1 <p,q<oo, 1/p+1/9g=1, A, B € M, (C), then we have
Te(AB)| < [IA[L 1B, (3.6.1)

When 1 < p,q < 0o, the equality is achieved iff V4 = V}j; and AP 157

IAlE = TBJI- Here V,, Vg are the polar

q
q

part of A, B respectively.

Remark 36. The result is trivial if one of p, q is 1. We assume that ¢ = 1. In this case, p = co. Then

[Tr(AB)| < Tr(JAB]) < [[A[[[|B]; (3.6.2)
where the first inequality follows from the Cauchy-Schwarz inequality
ITr(AB)| = Tr(VAB\AB\1/2|AB|1/2) < Tr(|AB|) (3.6.3)
and the second inequality is Proposition 28.
First Proof. exercise 6 [
Second Proof.

Lemma 6 (Hadamard three line theorem). Suppose f(z) is an analytic function in the strip Q = {z €
C:a < Rez < b}, then we have M (x) := sup,cg | f(x + iy)| is a logarithmic convex function in [a, b].
That is,

M(ta+ (1 —t)b) < M(a)'M ()", Vte[0,1]. (3.6.4)

Proof of Lemma 6. W.L.O.G. we assume that M (a) = M (b) = 1. Apply maximum principle to F},(z) =
f(z)e*/me=1/" we have |F,(z)| < 1on Q. Letting n — oo we have | f(z)| < 1 on Q. O

Without loss of generality, we assume that [|A[|, = [|B||, = 1. We construct the following analytic
function on the stripe 0 < Re z < 1 that continuously extends to the boundary:

flz) = Tr(VA|A|pZ|B*|q“_Z)VB) (3.6.5)
Let z = 1/p and apply Lemma 6, we have

Tr(AB)| = |f(1/p)] < 1. (3.6.6)

Suppose that |Tr(AB)| = 1, then |f(1/p)| = 1. By maximum modulus principle, we have | f(1/2)| = 1.
By the equality of Cauchy-Schwarz inequality we have V4| A|” 2 = Vg\B*\q/ ?. Therefore, we have

% = % and V4 = V. We can verify that if these conditions hold, then we indeed have |Tr(AB)| =

Te(Val Al B*|Vs) = Te(A|APV;) = Te(|AP”) = | Al = 1. 0
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Third Proof. We apply the rank-1 decomposition.
We take A = V4|A| = Vi) " | s# P4 with each P;* being a minimal projection. We absorb the

j=15j
polar part into P/ by defining V4 := VAPJA Then V4 is a rank-1 partial isometry. We can also do the

same for B. Then we have

ITr(AB)| Z Tr(s{sPVAVE)

3,k=1

Z sisB|Tr (VAP (3.6.7)

J,k=1

Next we estimate |Tr(V*V;?)|. By Proposition 28
(T (V2| < min [ V21V 1V V2N = ming T2 ) T ([P} < Te((vA) Y7 T v2) .

(3.6.8)
By classical Holder inequality, we have

T(AB) < 37 ol TV )T (VD) = D0 (o (VY (s (Vi) )

Gk=1
n /p s n 1/q
=<2Tr<sf>p17‘) (ZTMSE)QPE) — (Tt [AP)/7(Tx | B")/2 = AL I|BI.
j=1 k=1
(3.6.9)
O

Remark 37. From both proof above we can see that the polar decomposition is vital to the proof.

Proposition 39.

1 1
Te(Ar - An)] < Al WAl ko= =1 1< pi <00, (3.6.10)
1

Proposition 40 (The variational formula for p-functional).

Al = sup{Tr(AX) : | X[, = 1}, 1<p< o (3.6.11)
Proof. On the one hand,
|Tr AX| < HAHPHXHQ = HAHP. (3.6.12)
On the other hand, if we take
AP
X = —p]V|A, Tr(AX) = HAHP. (3.6.13)
A
O
Theorem 3.6.2. 1 < r,p,q < cowith* =141 then [AB|,. < [|A[LIIBl,

Proof. By the variational formula, we have (r denotes the Holder conjugate of r)

Proposition 39

[AB], = sup{[Tr(ABX)[ - [|[ X[, =1} < sup{[JA[L Bl I X, - [ X[, = 1} = [[A[L [ B],-
(3.6.14)
O



3.6. TRACE HOLDER INEQUALITIES AND MINKOWSKI INEQUALITIES 59

In fact, in the classical case, the Holder inequality also holds for 0 < p < 1. However we should point
out that the proof of the trace Holder inequality for 0 < p < 1 would be much more difficult than the
case p > 1. In fact, we will use the Minkowski inequality to prove the Holder inequality for 0 < p < 1.
We first state the Minkowski inequality for 1 < p < oo. This also implies that the p-functional we have
defined previously is actually a norm and (M,,(C), |-||,) is a normed vector space when 1 < p < oc.

Theorem 3.6.3 (Minkowski inequality).
I|A + BHp < ]|A||p + HBHP, 1 <p<oo. (3.6.15)
Proof. We can use the variational formula to show that. In fact, we have

A+ B, = sup{|Tr(A + B) X[ : [[X]|, = 1} < sup {[Tr(AX)[}+ sup {[Tr(BX)|} = [[All,+IBl],

X1, =1 1X1,=1

(3.6.16)
]

For 0 < p < 1, the p-functional is actually not a norm. However, we can still show that the p-
functional induces a metric on H=". In fact we have

Proposition 41 (Minkowski inequality for0 < p < 1). A, B> 0,0 < p < 1, then
A+ B, < Al +1I1Bll;,, 0<p<1. (3.6.17)

Proof. We define
T =AY?A+B)"'? S=BY*(A+B)"'2 (3.6.18)

Here we define (A + B)~'/% to be
(A + B)_1/2 = (A + B)_1/2|Range(A+B)PRange(A+B)- (3619)
Therefore

T*T+8*S = AV2(A+B) Y2+ BYV2(A+ B)"'? = (A+ B) " V*(A+ B)(A+ B) ™2 = Prange(a1)-
(3.6.20)
O

Therefore

Tr((A+ B)?) = Tr((A + B)"*(T*T + S*S)(A + B)**) = Te(T(A + B)PT*) + Tr(S(A + B)*S¥)
T*T 4 S*S < 1, P concave, Proposition 34

< Tr[(T(A + B)T*)?] + Tr[(S(A + B)S*)?]

monoticity
< Tr(AP) 4 Tr(BP).
(3.6.21)
Theorem 3.6.4 (Minkowski inequality). Suppose A, B € M,,(C), then we have 0 < p < 1,

1A+ Bl < 1Al + [1Bll;- (3.6.22)
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Proof. Recall Theorem 2.5.2
|A+ B| <U|A|U* + V|A|V*, (3.6.23)
then by the operator monoticity of z — 2P (0 < p < 1) we have
|A+ B|” < (UJA|U* + V|B|V*)P. (3.6.24)
Since U|A|U*,V|B|V* > 0, by Proposition 41 we have
Tr|A+ Bl < Tr(U|A|U*)" + Te(V|BIV*)? = Tr(|A]") + T (| B|"). (3.6.25)
O]

Now, we are at the place to prove the most general Holder’s inequality for general matrices A, B €
M,,(C). This is a very strong theorem.

Theorem 3.6.5 (Holder’s inequality). Suppose that 0 < p, q,r < oo such that %—i—% = % A, B € M,(C),
then we have
[ABI[, < [IA[l,I1B]l,. (3.6.26)

Proof. Step 1. For r > 1, we have already proved this in Theorem 3.6.2.
Step 2. If 0 < r < 1, max{p, ¢} > 2. Without loss of generality, we assume ¢ > 2. Then we have

|AB||” = Tr |AB|" = Tr(B*A*AB)"/? = Tr(B*|A|QB)T/2 = |||A|B. (3.6.27)

Therefore, without loss of generality, we can assume that A > 0, then we can apply spectral decomposi-
tionto A

A=>"s;P; s;>0, P;minimal projection. (3.6.28)
By Minkowski inequality, we have

|AB||" = Tr(JAB|)" Zs |P;B|". (3.6.29)

Not that || P, B||, < ||P.PxBl, = ||P:|PxB||, and P, commutes with | P, B| = (P,BB*P,)z, we can
use the classical Holder inequality to obtain

|PBIL < |2 BB (3.6.30)

Therefore, we have

=41, > ||PkB||Z]
k=1

> lIP:B
k=1
(3.6.31)

Moreover, by ¢ > 2, we have ¢ — t%/? is a convex function, therefore by Jensen trace inequality Theo-
rem 3.3.1, we have

IABI; < D P I1B Bl gs7 S [ZSka ()

k=1

n n Jensen trace inequality n
M NPB|E =Y Te(PB*BP)"? < > Tr(Pi(B*B)"*P;) = Tx((B*B)"?) = || B||".
k=1 k=1 k=1

(3.6.32)
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Therefore,
IABI[, < [[AlLIIBIl;. (3.6.33)

Step 3. For the last step, 0 < r < 1, max{p, ¢} < 2. We take [ € N such that [p > 2, then by the
result of Step2 we have
ATB

|ABJ|, = HA%A"TIB (3.6.34)

<
T

Ip 1

Here r; is the Holder conjugate of Ip. If r; > 1, then we take p; = ll_ll. By Holder’s inequality for r > 1
Theorem 3.6.2, we have

HA“%B < HA“% IBIl,. (3.6.35)
T1 p1
therefore, by the equality of Theorem 3.6.1
1 =1
4Bl < [[at] 47| 131, =411, (3:6.36)
If 71, we repeat the above procedure, AT B < ||A||;HAFTQB . After at most [ times, finally we
can see the inequality holds. 1 ’ [
Proposition 42. Suppose that 0 < py, -+ ,pm, T < 00 With pil + 4 i = %, then we have
[Ar--- Anll, < Al - [[Anll,,,,  Ai € Mu(C). (3.6.37)
Proof. 1t follows from Theorem 3.6.5. O
Proposition 43 (Reverse Holder inequality). Suppose that 0 < p,q <1, + . = Land A, B > 0, then
we have
IABI, = | All,[IBll,- (3.6.38)
Proof.
1 Theorem 3.6.5 _1
IAll, = [[ABB~H| < |ABI,||B7Y, (3.6.39)
O

Proposition 44 (Reverse Minkowski inequality). Suppose that 0 < p < 1, then we have
A+ Bl > AL+ ||Bll;. 0<p<1, AB>0. (3.6.40)
Proof. Let A, B invertible, then we have
Tr((A+ B)P) = Tr((A + B YA+ B)) = Tr((A + B)p’lA) + Tr((A + B)p’lB)
Reverse Holder Proposition 43 (3.6.41)
> 1AL IA + BI ™ + 1B, [IA+ B,
O]
Next we present two applications of the Holder’s inequality.
Proposition45. A, B > 0, 0 < «a < 1, then we have
A+ B

Tr(A"°B%) > Tr ~Tr|A - B. (3.6.42)
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Proof. Wetake X = (A— B),,then A — B < X i.e. A < B+ X. Now we have

Tr(A) — Tr (B*A'™*) = Tr ((A* — B*) A"™%)
operator monoticity

< Tr(((X + B)* - BY) A7)

monoticity and (X + B)® — B* >0

< Tr (X +B)*—B*)(X+B)'™*) (3.643)
=Tr(X 4+ B) —Tr (B*(B+ X))
< Tr(X) + Tr(B) — Tr(B) = Tr(X)

< Tr(|A - BJ)

Therefore Tr(A'=*B%) > Tr(A) —Tr(]A — BJ), similarly Tr(A'=*B*) > Tr(B)—Tr(|B — A|). There-

fore we have

Tr(A) + Tr(B) -
—Tr

Tr(A'"*B®) > .

(|A — BJ). (3.6.44)
]

Remark 38. [f Tr A = Tr B = 1 (density matrices), then we have Tr(A'"*B®) > 1 — Tr(|]A — B) i.e.
|A—B|, >1-Tr(A'""*B*).

Theorem 3.6.6 (Weyl’s inequality). A € M, (C), then

>IN <> N (ADE. (3.6.45)
j=1 j=1

Proof. Recall Theorem 1.3.1, we have
A (A)] = lim (A;(]A]™)™. (3.6.46)

For any & > 0, 3mg s.t. [\j(A)] < (1 + &)\ (JA™)Y/™(m > my). Therefore

n

STINAF < @+ SN (AT = (14 )RS |[A )
j=1 j=1 j=1

I (3.6.47)

m

Holder

< (Ltof [ JAlE-JAlb ] = @+ o)Al
—

m

]

Remark 39. This global Weyl’s inequality will be useful for Golden-Thompson inequality we will discuss
later.

3.7 Trace joint convexity

The main goal of this section is to show several joint convexity results that are strongly related to the Lieb
concavity (see example 12). To do this, we first recall some essential results.
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Proposition 46. The mapping (A, X) — X* A~ X is jointly concave on H° x M, (C).
Proof. See Proposition 14. O

Proposition 47 (Ando’s concavity). (A4, B) — AP® BT is jointly concave on H;* x H>? for 0 < p,r <1
andp+r < 1.

Remark 40. Can we say for more generalized p and r?

Proposition 48. The mapping (A, B) — AP @ B is jointly convex on H.;® x H>" for 1 < p < 2,
—1<r<0,andp+r > 1.

Proof. From the conditions we see that 0 < 2 —p —r < 1,0 < 2 —p,—r < 1. By Ando’s concavity
Proposition 47 we have

(A, B) = A*? ® B™" is jointly concave on H>" x H>°. (3.7.1)
Moreover, we notice that
e (AP BTl = A2AP @ BT,

¢ We consider
(AR(ATPA" @ B")(A®I)= A" ® B". (3.7.2)

Thus, by the operator convexity of ¢ — ¢~ and the joint concavity of (A, X') — X*A~! X Proposition 46,

we have
(A,B)—» (A I)'[(A*P@B") ' (A®I)= A" ® B" (3.7.3)

is jointly convex. 0

Remark 41. And symmetrically, by —1 < p < 0,1 <r <2and 0 < p+r < 1, the mapping is also
Jjointly convexity.

Proposition 49. The mapping (A, B) — AP ® B" is jointly concave on H,;° x H>° for —1 < p,r <0,
and =1 <p+r <.

Proof. It follows readily from the convexity of A — A~L, O

Remark 42. The only essence is the Ando’s concavity. But it does not hold for p +r > 1. A quick
explanation is by considering the algebraic homomorphism AP @ A" — APT". So when p +r > 1, the
concavity is changed to convexity when p +r > 1.

Recall the skew information
1 1
I(p.X) = 5 Tr ([p%, X)*[p2, X]) . where p is a density matrix. (3.7.4)

Remark 43 (Remark of history). Wigner-Yanase-Dyson (1973) conjecture: to study the convesity of
1
Ii(p, X) = §Tr([ps,X]*[p1*S,X]), 0<s< 1. (3.7.5)

Lieb (1976) gave the Lieb’s concavity
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Theorem 3.7.1 (Lieb, 1976). (A, B) — Tr(X*APXB") is jointly concave if 0 < p+r < 1 and
0<pr<l.
Strategy of proof. Consider the analytic function

f(z) = Tr(X*AZXBs*Z) (3.7.6)

on a strip. Then we use the Hadamard’s three line theorem to discuss the maximum of f(z) on the
boundary of the strip. [

In fact, Lieb’s concavity can also be generalized like the case of Ando’s concavity. We can also
consider the joint convexity of the mapping (A, B) — Tr(X*APXB") forp +r > 1.

Proposition 50. The mapping (A, B) — Tr(X*APX B") is jointly convex on H° x H>° for
c1<p<2—1<r<0p+r>1;
e —1<p<O1l<r<2p+r=>1L
* —1<p<0-1<r<0-1<p+r<0.

Proof. Wetake ' =7, | Ej, ® Ejy, then

Tr(X* APX BT) — %(Tr @ Tr) [E(X* @ I)(A? @ B')(X @ I)E] (3.7.7)

then the results follows from the generalized Ando’s convexity Proposition 48 and Proposition 49. [

Another natural question is whether we can also consider the joint convexity of the mapping
(A, B) — Tr(X*A_pXB_T), 0<pr<1, p+r<l. (3.7.8)

The original proof is given by Lieb, which seems a little bit complicated but quite provocative. In fact he
considered the extended problem on M,,(C) & M, (C) rather than the tensor product space.

Proof. Let A € [0, 1] and let
A=A+ (1= NAs, B=\B;+(1—\)B,. (3.7.9)
Let X, Xo, X], X} € M,,(C), then we would like to show

X+ (1= NXD AP, + (1= NXa)B™) < MX] APX, B + (1— A)(X}, APXB7),
(3.7.10)
Here (-, -) is the Hilbert-Schmidt inner product on M,,(C). Since A, B € H.’°, we can verify that (-, -);
and (-, -)» defined as follows are both inner products on M, (C) & M,,(C):

<X{ D Xé, X1 D X2>1 = <>\X{ + (1 — )\)Xé, A_p<)\X1 + (1 - )\)XQ)B_T>7

3.7.11
(X1 X5, X180 Xa)e :=(X{,APX B™") + (1 = N\)(X3, AP X, B™"). ( )

By Riesz’s representation theorem, there exists a linear operator 7" on M,,(C) & M,,(C) such that

(X7 @ X5, X1 & Xo) = (X] & X5, T(X1 @ Xa))o. (3.7.12)
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Let a be an eigenvalue of 1" with eigenvector Y; & Y5. Then we have

(X0 @ X2, Y1 @ Ya)s = aMX], ATViBL™) + a(1 — \)/(X3, A7"Ya By 7). (3.7.13)
(X1 Xy, Y10 = MX,APAX1+ (1 =X Xo)B™") + (1 = M\)(X, AP(AX1 + (1 =N X2)B™").
(3.7.14)
We denote Y := A"P(AX; + (1 — X\)X3)B™", then
MXLY) + (1= A)(X5,Y) = aMX[, ATPYiIBT) + a(l = A) (X5, Ay7Ya By ") (3.7.15)
By the arbitrariness of X|, X, we can see that
aATPYiB =Y = aA;PYsBy". (3.7.16)

Therefore, by Lieb’s concavity example 12 we have

Tr(Y*(AY; + (1 — A)Yy)) “Me Y Ty (y* APy B)

Lieb concavity

S LAY - (- VT AYEY) aran
=a\Tr (YY) +a(l — \) Tr(YY5)
=aTr(Y' WY1+ (1-AY2)) =a< 1.

Therefore T' < 1, thus

(X1 @ X5, X1 © Xo)y < (X] @ X5, X1 @ Xa)o (3.7.18)
which is what we want to show. [
Another proof.

(X*@ ) (A? @ (BH)") (X ®1) (3.7.19)

is joint convex since ¢ — ¢! is decreasing on (0, o) together with example 12 and Proposition 46. [

Remark 44. The tensor product proof is only single line. But we should remark again that Lieb’s original
proof is sometimes the only viable approach.

Theorem 3.7.2. (D, X) — fooo Tr (X* SjDX SjD)ds is jointly convex.

Remark 45. Recall that

| 1
Pp(X) = X d 3.7.20
p(X) = [ X s (3.7.20)
then .
X)) = / DX D'5ds. (3.7.21)
0

Proof. We follow the proof of Lieb. We define
D = AD; + (1 — \)Ds. (3.7.22)
Define the conjugate bilinear form
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(X1 @ X5, X1 8 Xa)g := NXT, Pp, [X1]) + (1 — MN(X5, Dp,[Xa]). (3.7.24)

Repeat the previous proof, we have
a®p, (V1) = Dp(AVi + (1 — W)Y) =V = adp,(Ya). (3.7.25)

By the convexity of @' (since ,'(X) = fol D*X D'~*ds, by noncommutative Jensen inequality), we
have
Tr(Y*[AY; + (1 = V\)Ya]) = Tr (Y05 (Y))

Lieb’s concavity

> ATe(YH, 05 (V) + (1 - N Tr(Yropl(ve) (3720)
—aTr (VY + (1= NYs) = a<1=T<1.

]

Remark 46. The phylosiphy is that: the concavity of the inverse gives the joint convexity of the original
mapping.
Remark 47 (Remark of history). WYD conjecture: we study the convexity of Tr(p* X* p' =% X') by studying

the convexity of Tr(APX*BX). The generalized WYD conjecture for Tr([A%X *B"X Ag]s) was also
resolved very recently by Zhang 2019.

3.8 Golden-Thompson inequality

Lemma 7 (Lie-Trotter formula). Let A, B € M, (C), then

. A B\™
eAB = lim <emem> ) (3.8.1)
m—0o0
Remark 48. For analytic function e* = I + A + %AQ + -+ can be defined using power-series, which
means that the definition can in general be the whole domain of convergence, instead of simply the
spectrum like in the usual case of Hermitian matrices.
A+B

Proof. Let X, = eAlmeB/m 'y — o

IX™ = Y| < ml| X — Vil {max(| Xo |, [ Vinl) }™ " (by factorization of A™ — B™)  (3.8.2)

Moreover,
A B A B
Xl < AL H’ V]l < JRETE n, (3.83)
thus
1 = Yol < m| X — Yol (3.84)
We compute
A A 1 B B? 1
Xp=\I+—=+7=5+o|— I+ —+-—+ol—)]), (3.8.5)
m  2m? m? m  2m? m?

2
Ym—<I+A+B+(A+B) +o<i>). (3.8.6)

m 2m?
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AB — BA 1
X, —y, =22 =84 (2], (3.8.7)
2m? m?2
Thus
1 1
HXﬁ—YﬁHSm~—;wmww+meeo(—)- (3.8.8)
m m
Let m — oo, we have
lim || X — Y™ = 0. (3.8.9)
m—00
~ lim [e%e%}m _ ATB, (3.8.10)
m—0o0
0

Theorem 3.8.1 (Golden-Thompson inequality). Suppose that A, B € M,,(C), then we have
| Tr(e*P)]| < Tr(efeAeRe?). (3.8.11)

Proof. For r € N, by Weyl’s inequality Theorem 3.6.6

ITe(AB)™ | =Y [N(AB)|" <> N(|AB|)” = Tr |[AB|”. (3.8.12)
j=1 j=1
Tr|[AB[* = Tr((B*A*AB)") = Tr((A*ABB*)") = Te ([|A]*|B*[*]"). (3.8.13)

Let m = 2%, we have

Tr(AB)*

< Te([aP B P ) < T (1A BT < - < (AP B, G4

We apply the change of variable A — 2" By e? "B o get the result. We have

— — 2k C A * — c—1 C R* — —1
|Tr<eA+B)’ _ ;}LIEO Tr<e2 kA2 kB) ‘ < I}E&Tr«eﬂm o2 kA)zk (e’ZkB o2 kB)zk > :Tr(eReAeReB)‘
(3.8.15)
O]
Remark 49. For A, B Hermitian, we have
Tr(e*?) = Tr(ee?) (3.8.16)
But in general we do not have
| Tr(ePHC) | = Tr(ete”e). (3.8.17)

A more generlized result is Golden-Thompson-Lieb inequality.

Lemma8. A — Tr (eX “OgA) is concave, where X is a density matrix.
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Proof. By Gibbs variational formula, we have

log Tt (¢*1%5) = sup{Ty (XA) H(A||A)} (3.8.18)
A

The supremum is achieved when A = r€X+1°gA .For A= MXA; + (1 — X\)A2 (A € [0,1]), we have

)\lOgTr(eX+10gA1) 4 (1 _ )\) logTr(eX+logA2>

=)\ Tr(XA]) — MNH(A||Ay) + (1= )) Tr(Xﬁz) — (1= N)H(A]|4s). (3.8.19)

Since —H (B||A) is jointly concave for Prange(B) > Prange(4) by Theorem 3.4.4, we have

AMog Tr (X8 4) 4 (1 — A) log Tr (e +142)

< Tr(X(Aﬁl (- A)ZQ)) — HOA + (1= \)A[[ ML+ (1 - A)Ay)

~ ” (3.8.20)

Gibbs variational formula again ~

< sup{Tr(XA) H(AJ|A)} = log Tr(eX e 4),
A

Since t — e~ is decreasing and concave, we have
A — Tr(eXtloed) (3.8.21)
is convex. Thus A — Tr(e**!°84) is concave. O

Theorem 3.8.2 (Golden-Thompson-Lieb inequality). Suppose that A, B, C are Hermitian matrices, then

A+B+C A B
Tr(e +5+ )g/o Tr(e )\+6_Ce )\—i—e—c)d)\' (3.8.22)

Proof. We denote
h(t) = Tr(eXlosPHY)) (3.8.23)

where Y is a Hermitian matrix. By Lemma 8 we have h(t) is concave. Therefore

h(1) — h(0) < KW' (0). (3.8.24)
Moreover,
>~ 1 1
"0)=T X“O%D/ Y . 3.8.25
7 () r(e . A+ D ar (3.8.25)

Lemma 9. Let Q) be a convex cone, f is a convex function on §) and f is homogeneous of order 1

ie. f(Ax) = Af(x) for X > 0and x € Q. Let y € Q and limy_,o4 L@rt) I @) orists, then fly) >

t
limy_0; L (a:+tyt)ff (z)

Proof. By the convexity of f, we have h(t) := f(z + ty) is convex and thus h'(0) < h(1) — h(0),

therefore t
floty) — f(z) > i LTI

(3.8.26)



3.9. WEYL MAJORIZATION THEOREM 69

By the convexity and homogeneity of f, we have

Sfaty) = (“’ *y) <

) < S+ F)] = fety) - f@) < @)+ )~ (@) = ). 3827)

Thus we have

fla+ty) - flx) (3.8.28)

]

Note that in our case, h(t) is also a homogeneous function of order 1 and —A(t) is convex, then we
have

W (0) > h(1) — h(0) = Trexp(X +log(D +Y)) — Trexp(X +1log D) > Tr(e*T8Y).  (3.8.29)

Thus we take D = e ¢, X = A+ C,Y = €5, then we have

A+B+C A B
Tr(e ) < /0 Tr (e T e_ce T e_c)d)\. (3.8.30)

]

Next we give another version of Golden-Thompson theorem in terms of the so-called weak majoriza-
tion. The statement is

Theorem 3.8.3 (Informal). B )
eMP <, e2ePer. (3.8.31)

This is called Weyl’s majorization theorem. We will focus on addressing this in the next section.

3.9 Weyl majorization theorem

Theorem 3.9.1 (Karamata’s inequality). x,y € R" are vector ordered non-increasingly, then y < x
<= for any convex function f we have » 7, f(y;) < > 7, f(;).

Proof of Theorem 3.9.1. = We recall that y < =z iff there exists a doubly stochastic matrix S such that
y = Sx. We take f to be a convex function, then we have

Yo rw)=>_f (Z Sjkl’k> . DO Siflwk) = flan) (Z 5jk> = flax).
j=1 k=1 k=1 j=1 k=1

j=1 7=1 k=1

< We consider f(z) = |x — t| convex, then we have

Dl =t <Dy —tl. (3.9.2)
J=1 j=1

‘We note that
ly; —rl=2(y; —7)+ — (y; — 7). (39.3)
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Here ¢, is the positive part of ¢ i.e. ¢, = max(¢,0). Then we have

Dlyi—rl=2> (=) =D (=) =2> (y—1)r = >_yj+nr. (3.9.4)
Jj=1 Jj=1 Jj=1 j=1 j=1

We take r large enough (r > z), then
(yj—r)y=(z;—71)+ =0, Vj=1,--- n. (3.9.5)
Therefore

—Zyj+nr§—2xj+nr:>2yj22xj. (3.9.6)
j=1 j=1 j=1 j=1

Likewise, we can take r small enough (r < min{z;,y; : j =1,--- ,n}), then we have

Sy (3.9.7)
j=1 j=1

Combining the two inequalities, we have ) 37, y; = >

n

j=1 ;. Thus we have

n

>l -i =3 (Z IS NE r>>
:§<Z|yj—r|+z<xj—r>) <

Next, we take x;,_1 < r < x, then we have

k k n
Z Y — kr S Z(y] - 7”)+ S Z( . 7’ S Z . 7’ by conitructlon Z v — Er. (399)
j=1 j=1 j=1

(Z |z — |+ Z(%‘ - 7”)> = Z(xj — 7).

j=1
(3.9.8)

N | —

Eliminating k7 from both sides, we have

k k
Doy <) (3.9.10)
j=1 j=1

By the arbitrariness of k£, we have Z ;i < Z yx; forany 1 < k < n, thatis y < x together with
Z;Lfl Lj = 2?71 Yj- [
We give the definition of weak majorization. In a nutshell, the difference between weak majorization

and strong majorization is that the former does not require the equality condition Z?Zl Tj = 2?21 (e

Definition 3.9.2 (Weak majorization). Let x,y be two real vectors ordered non-increasingly. We say that
y weakly majorizes x, denoted by y <., x, if E?Zl y; < Z?Zl xjforany 1 < k <n.

The following equivalence is a very important characterization of weak majorization. When we
encounter weak majorization, we will use this equivalence to deal with it.
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Proposition 51. Let x,y € R", then y <., x iff there exists T € R™ such that
y<z and T <. (3.9.11)

Proof. = Lety <, x. We prove by induction. For n = 1, y; < x1, we only need to take r; = x;. Next
we assume that the statement holds for any 1 < k£ <n — 1. We take

k k
a= min {2:}3] - Z;yj} > 0. (3.9.12)
Jj= Jj=

We consider

Y1+ a
Y
N (3.9.13)
Yn
Then we observe that y; +a > 3, > --- > y,, and by construction and y <, x, we still have
Y1 ta e
Y2 T3
) =w
Yn Tn
By the minimum is achieved, we have 3k, such that 250:1 Yy +a= 2?0:1 x;. That is,
U1 +a T
Y2 T3
<1 . | (3.9.14)
yko wko
Y1+ a
) - Yy . . .
If &y = n, we can just take * = ,2 . If ky # n, then we use the induction hypothesis to the
Yn
yk‘o-‘rl
remaining part : to get the required 7. 0
Yn

Definition 3.9.3 (Doubly substochastic matrix). S € M, (R) is called doubly substochastic matrix if S
is a non-negative matrix and Z;;l Sik <1, >0 S <1foranyl <k <n.

Proposition 52. =,y > 0, then y <, x iff 3 a doubly substochastic matrix S such that y = Sx.

Proof. = By y <, z and Proposition 51, there exists = such that y < ¥ < x. Therefore, there exists
a doubly stochastic matrix Sy such that z = Syz. Since x,y > 0, we have z; # 0, thus we can take
a; = %, 0<a; <land S = diag(ay,- - ,a,)Sy. Then we have y = Sz and S is doubly substochastic.

<« is by iteratively adjust S to obtain a doubly stochastic matrix Sy. We omit the details here. 0
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Theorem 3.9.4 (Karamata’s inequality). Let z,y € R", y <., x, then for any convex increasing function

f we have
Zf yj) < Z (3.9.15)

Proof. = By Proposition 51, we have y < = < z. By the convexity of f and Karamata’s inequality, we

have . i
S F@E) <Y flay). (3.9.16)
j=1 j=1

Then by the monotonicity of f, we have

n n

Zf(yj) <Y F@) <D flay), (3.9.17)

J=1 Jj=1

< We take f(t) = (t —r)4, by f is convex and increasing, we have

n n

D =) <D (@ —r)s (3.9.18)

Jj=1 Jj=1

We take ;1 < r < x, then we have

Zyj —kr < Z(yj 7)1 <) (Y =)+ < Z(%’ — )y = Z%‘ — kr. (3.9.19)

(]~
&

IA
(]~
3

=

A

T

A

3

(3.9.20)

]
We next define the logarithmic majorization.

Definition 3.9.5 (Logarithmic majorization). Let x,y > 0 € R" ordered non-increasingly, we say that y
weakly logarithmically majorizes x, denoted by y <105 T, if

v <]z vi<k<n (3.9.21)

If we additionally require 2?21 Y = Z?Zl xj, we say that y logarithmically majorizes x, denoted by
Y <log T (this conception is less frequently used).

Remark 50. If v,y > 0, then y <yi10g T iff logy <. logx. Here logx,logy € R" is calculated
component-wise.
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Proposition 53. Let x,y > 0 and y <104 ¥, then for any function f : [0,00) — R with t — f(e')
convex, we have

f(y) <w f(x). (3.9.22)

Here, f(z) and f(y) are calculated component-wise.
Proof. By imitating the proof of Theorem 3.9.4. ]

We will see that the Weyl majorization theorem represents a quite important phenomenon of log-
majorization. To prove this result, our strategy is to realise the product of eigenvalues via a constructive
way. That is to consider the eigenvalue of the operators acting on an antisymmetric tensor product space.

Definition 3.9.6. v, --- , v, € C", we define

k
1
VA A = NG Z Sign(0) V(1) ® -+ @ V() € /\ c". (3.9.23)

T oeBy

Here, \" C" = Span{k-order antisymmetric tensors}, dim(\* C") = (%). Moreover,

(VI A AU, wp A -+ - A wg) = det((vj,w@);g:l. (3.9.24)
We can define the orthogonal projection operator P, : ®k C" — /\k C™ as follows:
1
Py @+ @) = ﬁulmumk, P} =P, =P;. (3.9.25)
We define an operator A" by its action:
ANy A Avg) = (Av) A=+ A (Aw). (3.9.26)
Then it is easy to verify that
k k
PAMP, = AP, Q) C — \C, (3.9.27)
(AM)* = (A, AMBM = (AB)™, AN = |A[M (3.9.28)
Lemma 10. Let A € M,,(C), then we have
k
A =TT M0AD, VI<k<n. (3.9.29)
j=1

Remark 51. This naturally gives rise to the logarithmic majorization between the eigenvalues of A and
|Al. In some sense, ! ANk H is the multiplicative version of trace.

Proof. Let v; be the eigenvector of |A| corresponding to A;(|A|), then we have

k
| A (05, A ) =TT A (ADvs, A Ay, (3.9.30)

=1
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Thus, under the basis {v;, A --- Av;, }, |A|"" is diagonalized and

k
diag <HA |A|)H:>supH)\ (14 = T A 0A4D. (3.9.31)
j=1

H|A|/\k

Thus we have

] = A% = ||l

k
=TT >4 (3.9.32)
j=1

]

Theorem 3.9.7 (Weyl’s majorization theorem). Let A € M,,(C), then we have

k k
[T <TTN04D, vi<k<n (3.9.33)
i=1 ‘
Proof. Let X be an eigenvalue of A with algebraic multiplicity m,, then we have there exists a “cyclic
basis” {1, -, Z,, } such that Ax; — Az; € Span(zy,--- ,x;_1) (One may understand this by thinking
of the Jordan form). In particular, we have a linearly indepedent set {vy, - - - , v, } such that
AU]‘ — )\j(A)Uj S Span(vl, s ,Uj_1), V1l <j<n. (3.9.34)
Note that the antisymmetric tensor vanishes whenever two of the vectors coincide, thus w := Av; —

\j(A)v; does not contribute to the action of A”* on the antisymmetric tensor product space. That is,

:
ANy A A = (Av) A=+ A (Awg) = H Ni(A) (g A= Awg). (3.9.35)

J=1

Thus, by Lemma 10, we have

=

[T < [la( =TT ra4D. (3.9.36)

]

Next, we can immediately apply the results of log-majorization to the Weyl majorization theorem.
This will give us the generalization of the Weyl inequality Theorem 3.6.6 and the stronger Golden-
Thompson inequality.

Proposition 54. Ler A € M, (C), f is a increasing function on [0, 00) with t — f(e') convex, then we

have
(M (A)]) fF(A]))
: <w : . (3.9.37)

F(A(A)]) F(Aa(lA]))
Corollary 8. We take f(t) = t* for o > 1, then we have

k k
> (A Z (JAD®, Y1<k<n. (3.9.38)
j=1 j=1
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Remark 52. This is a much stronger and more essential result than the original Weyl inequality Theo-
rem 3.6.6. However, this is only directly applicable in the finite-dimensional case.

Theorem 3.9.8 (Golden-Thompson inequality, formal version of Theorem 3.8.3). Let A, B € M,,(C), f
is increasing and f(e') is convex, then

B+B* A+A* B+B*>

F(eAP) <, f(e A B (3.9.39)

Remark 53. By taking f = Id, we can obtain the original trace version of the Golden-Thompson in-
equality.

3.10 Araki-Lieb-Thirring inequality

We extend the weak majorization results of Weyl to a “parametrized case”. That is, we consider the trace
inequality of the following form

Tr(B%AB%> < Tr<(B%ASB%)%>. (3.10.1)
Theorem 3.10.1 (Furata inequality). Let A, B > 0, 0 < s < 1, then we have
|4°BY|| < | ABII" (3.10.2)

Proof. We denote
A={s:||A°BY| < ||AB|}. (3.103)

we need to show that A is a convex set. It is easy to see that 0,1 € A. We take s,¢ € A, then we want to

S S 2
show that £ € A i.e. HA%B# < ||AB|°**". Therefore,

LHS = HBST“AS? || = (BT ATMBT) = (AT B
(3.10.4)
= r(B°A*A'B") < |B°A°|||| B'A’|| = || AB||”"" = RHS.
Therefore, A is a convex seti.e. A = [0, 1]. O

To prove the Araki-Lieb-Thirring inequality, we first need to prove the following key lemma. Then
the Araki-Lieb-Thirring inequality follows readily via connection bewteen weak logarithmic majorization
and the weak majorization (see Proposition 53).

Lemma 11. A, B >0, s > 1, then

1
s

B2AB? <10, (B2 A*B3)5 . (3.10.5)

The main idea of the proof of this lemma is again using the structure of wedge product operators (like
in the proof of Weyl’s majorization theorem).
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Proof. WeletY, = B2 A*B2, then we need to show that

k k

[T (B2AB:) < A

J=1 J=1

), VI<k<n. (3.10.6)

1
Note that A\(Y;*)® = A(Y;), we consider the product of distinct eigenvalues of Y;. We consider the
k-wedge product of Y

fwm = 24 = |[[az B2y (a2 B || = || (4B [(a2 2|

Furata inequality

- H<A%B%>”“H2 = iy sy = i i

Po .
(3.10.7)

k k
ITou) %zH (Y1), Vk. (3.10.8)

Jj=1

H(AM) 5(BMF)

Therefore,

We note that Y; = B AB %, thus we have

w |=

B2 AB? <10 (BFA*B?)" . (3.10.9)
O

Theorem 3.10.2 (Araki-Lieb-Thirring inequality). Let A, B > 0, f is increasing and f(e') is convex,
then we have

f((B2AB?)*) <, f(B?A*B3). (3.10.10)
Remark 54. The more “popular” version of the Araki-Lieb-Thirring inequality is the trace version:
Tr(B%AB%> < Tr<(B%ASB%)%>. (3.10.11)

As a remark of history, the original version of the Araki-Lieb-Thirring inequality (Lieb-Thirring inequal-
ity) relies on a different proof technique, which is based on the properties of analytic functions. The proof
based on the construction of wedge product operators in fact provides more structural information.

Corollary 9. Let o > 0, s > 1, then we have
(B2 AB2)* <,, (B A*B%)". (3.10.12)

In particular,
Tr[(B%AB%)aS} < Tr[(B5A°B3)"). (3.10.13)

S S l
That is, s — Tr(BiAst) * is increasing.

As an application, we show (1) a generalized Golden-Thompson inequality; (2) an entropic inequality.
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Theorem 3.10.3 (Generalized Golden-Thompson inequality). Let A, B be Hermitian matrices, then s —

sB sB\T . . . .
Tr[(e > esde )} is increasing. In particular,

Tre™? < Tr|(eT ee?)s (3.10.14)
Remark 55. In particular, if we take s — 0, then we get the Lie-Trotter formula.
Theorem 3.10.4. Let A, B > 0, s > 0, then
%Tr(Alog B2AB?) < Tr(Alog A+ Alog B). (3.10.15)
Or equivalently, we have
éTr(A log B"2A*B~2) < H(A|B). (3.10.16)

Proof. Without loss of generality, we let Tr A = 1. By the Gibbs variational formula, we have

Golden-Thompson

H(A[|eP) > Tr(AX) —log TreX*P > Tr(AX) — log Tr((e%esxe%)%) (3.10.17)
Let X = log(e *P/2esXe=P/2) Then we have

H(A|leP) > %Tr(A log (e *P2esXe2P/2)). (3.10.18)

Then the required result follows by taking D = —log B. [

3.11 The convexity of some entropy functionals

The material in this section is mainly based on the work of Carlen and Lieb [CL0O8]. Specifically, we care
about the following types of functionals:

(A1, -, Ap) = <ZA§>F ; (3.11.1)
j=1

q

and
T, (A) = Tr((B*APB)%). (3.11.2)

Lemma 12. If1 < p < 2, and q > p, 'y, is convex function.

Proof. Since A — AP is operator convex, so is A — B* AP B. Moreover, if we let r := ¢/p > 1, then by
the variational formula of r-norm, we have

|B*APB|, = sup Tr(B*APBY) (3.11.3)

1Y]l,y<1,Y'>0

Thus, as the supremum of a family of convex functions, I, ; is convex. L]
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Lemma 13 (Young’s inequality). If o + 3 = 1, then ara + /By% > x%® for any x,y > 0. Moreover, if

r>1,a,b> 0, then we have
1 -1
Sa 4+ L > bt (3.11.4)
r r

Proposition 55. For r > 1, we have the following key observations:

Tr((A*A)%) = %inf{Tr(A*Xer) +(r—1)TrX : X > 0}. (3.11.5)
Similarly, forr < 1,

Tr<(A*A)%> - %sup{Tr(A*X”A) Y (r—1)TrX:X >0} (3.11.6)

Proof. By eq. (3.11.4) and the previous result Theorem 3.4.3 for Klein inequality, we have

1 —1
Tr<(AA*)%) <-T(AX'TA) + T X G.11.7)
r r
O
Proposition 56.
o q. p 1-2 5% 42 P . .
I, q(A) ==inf {Tr<A2BX aB A2> + (— — 1) XX > O} (p > q); (3.11.8)
p X q
T,,(4) = Lsup {Tr<A’£BX1—’$B*A’£) + (]—9 - 1> X:X> o} (p < q). (3.11.9)
P x q
Proof. 1t follows readily from Proposition 55. [

Lemma 14. Let f(x,y) be a jointly convex/concave function on Iy x Iy, then g(x) = inf cp, f(z,y) is
convex/concave on 1.

Proof. Take z1,xo € I; and A € (0,1). For any € > 0, there exists y1,y> € I such that f(z1,y;) <
g(x1) + &, f(x2,y2) < g(x2) + . Then we have

by defn.
g Az + (1= Nzz) < f(Azr + (1 — Nz, Adyn + (1 — N)yo)

by joint convexity 3.11.10
< Af(zi,) + (1= A) fx2,92) ( :

< Ag(z1) + (L = N)g(z2) +¢.
Taking ¢ — 0 on both sides yields the desired result readily. [

Remark 56. This means that the convexity or concavity is somewhat “stable” under taking infimum or
supremum. That is why the variational formula technique as we have established in Proposition 55 and
Proposition 56 is useful in proving the convexity of these entropy functionals. In the next reading section
section 3.12, we will revisit this strategy again.

Theorem 3.11.1. (1) If1 <p<2,q>1,thenT,, is convex;

(2) If0<p<q<1, thenl,, is concave;
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(3) If p > 2 and p # 1, then I, , is neither convex nor concave.

Proof. For (1), by Lieb’s concavity Proposition 50 (see also example 12), (A, X) — Tr (BX 1= B* AP

is jointly convex for 1 <p <2, -1<1— %’ <Oandp+1-— § > 1. By Lemma 14, we have I';, ,(A) is
convex.
For 2),if0 < p<¢<10< 1—§ < 1, wev have 0 < 1—§—i—p < 1. By Lieb’s concavity,

1-2

we have (A, X) — Tr <BX qB*Ap) is jointly concave. By Lemma 14, we have I, ,(A) is concave. If

0 < g < p < 1, then the result is trivial by A — AP is concave and A — A?» is concave. For (3), the
proof is based on Taylor expansion. We let

10 tX
B:(l 0)’ A:( Y). (3.11.11)

Then direct calculation shows that

T,,(A) = Tr<(tPXP+YP)%). (3.11.12)
By Taylor expansion, we have
Ipo(A) =Te(Y?) + 4 Tr(Yq_po)tp + O(t?). (3.11.13)
p

Note that we have taken the advantage of expanding w.r.t. t¥ and the commutativativity of the trace. We
replace X with A;, A, and %, we find

A+ Ay
2

1 1

§Fp7q(A1) + §Fp7q(A2) - Fp,q (

1 1 FRURY: (3.11.14)
_ 1 (5 Tr(Y9PAY) + 3 Tr(Y?TPAD) — Tr {Y‘H’ (%) }t”) +O(t%).
p

That is,

RS2

1 1 g Ay + AP v
5 Tr [(tpA’f +Y?) ] +3 Tr [(tpAg’ + YP)E] —Tr (tp% + Yp)

(3.11.15)

q 1 _ 1 _ _ Al + A2 P
= ) (5 Tr(YePAY) + §Tr(Yq PAD) — Tr {Yq P (—2 ) + O(t?).

Since A — AP is not operator convex, p > 2, thus there exists v € C, ||v|| = 1, such that

1 1 A+ A\
§<Ag’v,v>+§<A§v,v>—<(%> v,v) < 0. (3.11.16)

However, take Y to be a projection to Cu, then the right hand side of eq. (3.11.15) is nothing other than
the inner product terms in eq. (3.11.16). This shows that the left hand side of eq. (3.11.15) is negative,
which implies that I', , cannot be convex for such p and ¢. Similarly we can show that I', , cannot be
concave.

]
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1
Lemma 15. I', , and I'j ; have the same convexity properties.

Proof. The proof is based on the fact that, when f is homogeneous with degree 1, then f is convex if and
only if {z € Dom(f) : f(z) < 1} is a convex set. O

is jointly convex for 1 < p < 2, q > 1; and is jointly
q

Corollary 10. (Ay,---  A,) — H (Z;’”‘zl A?)E

concave for 0 < p,q < 1.
Proof. We consider diag(Ay,--- , A,,) and use Theorem 3.11.1. O

Remark 57 (Remark of history). Many lines of investigation of such types of functional inequalities
can be traced back to, again, the WYK hypothesis, which drew attention to the concavity of A —
Tr(APX A'=PX*). The physical motivation is: some states are easier to measure than others; if a density
matrix p commutes with a conserved quantity (say the energy) then it is easy to measure, and otherwise
not. Thus, while the von Neuman entropy of any pure state p is zero, some pure states have a higher
information content than others — namely those that are not functions of the conserved quantities, such
as the Wigner—Yanase skew information I(p) = Tr X?p — Tr p%Kp%K.

3.12 Reading: How far can we go with Lieb’s concavity and Ando’s
convexity?

We consider a very important family of entropy functionals: the o — z Rényi entropy. We define the o — z
Rényi entropy as

1

1
H,.(pllo) := logTr(a

z‘z"p%alz‘!’) ol > 1,2 >0 (3.12.1)
a—1

In particular, we define

l—a ya

* z = 1: a-Rényi entropy H,(p||o) = 5 log Tr(a'~*p*);

« 2 = a: sandwiched a-Rényi entropy H,(p||o) = -5 Tr (o = p%a%&) :

In fact there are many other types of entropy functionals with quite complicated connections among them
(see fig. 3.1).

We are interested in the “monotonicity” or data-processing inequality of the relative entropy func-
tional. That is, for any quantum channel ®, whether we have

H,.(®(p)||®(0)) < Hu.(pllo), Vp,o € D(H) being density matrices. (3.12.2)

The standard argument shows that it is essentially equivalent to some Lieb/Ando-type convexity.
Specifically,

Example 13. Set

1
U(A, B) = Tr (B%APB%> A B e, (3.12.3)
with )
p=2, gi=—2 (3.12.4)
z VA

Then the DPI holds for the o — z Rényi entropy H,, . if and only if one of the following holds
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Figure 3.1: Welcome to the entropy zoo by Philippe Faist (ETH-Ziirich)

* a < 1andV is jointly concave;
* a > 1andV is jointly convex.

This is one of the very important motivation of the study of Lieb/Ando type convexity properties.
Before [Zha20], the known results for data-processing inequalities are summarized in fig. 3.2
The Carlen-Frank-Lieb conjecture is to ask whether we have the necessary and sufficient conditions.
» q|2s
A2 X B>

U,,o(A, B) =Tr (B%X*APXB%)S T (3.12.5)

is jointly convex/concave for all X € H>°. The main result in [Zha20] is

* W, 4.5 18 jointly concave iff 0 < s < 0 <pqg<l,

'\I/qslsJOIHtlyCOHVCX1ffS> 1<p<2—1<q<00rs> 1§q§2,—1§p§00r
SZO,_lgp,(]SO.

The building blocks are very fundamental:

1. A special case of Lieb concavity Forany 0 < p < 1, ¥,;_, (A, B) = Tr(X*APXB'"?) is
jointly concave if X € H?;

2. A special case of Ando convexity For any —1 < p < 0, ¥,,_,1(A, B) is jointly convex if
X e HY,

3. A quite well-known fact Forany ¢ > 0, A — Tr A~ is convex.
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% at 0o : Dpax
/ © DPI holds
unknown
before Z. 20

Figure 3.2: Known results of DPI for H,, , before [Zha20]

Besides the building blocks listed above, the key technique to prove the results is actually the variational
formula approach in section 3.11 just like the proof of the results of Carlen and Lieb [CLO8]. We begin
with a “toy example” for the purpose of warm-up.

Example 14. Let 1, 5(z,y) = 2°y®, show that it is jointly concave for 0 < o, 3 < land a + 3 < 1.
Lemma 16. If f(-,y) is concave for each y, then min, f(-,y) is concave.

Lemma 17. By Young’s inequality, we have
1 1 1 1
ab < —a’ +-b%, -4+ -=1 (3.12.6)
p q p q

By taking (a,b) — (ac,bc™t), we have for any ¢ > 0,

1 1 1 1
ab=ac-bc' < —(ac)’ + —(bc ), -+ -=1. (3.12.7)
p q P q
Then we have the variational formula for the product ab
1 1
— mi - P Z(h—1\a
ab rg(r;{p(ac) + q(bc ) } (3.12.8)
This gives readily
a B « Lyats p — 5\t o1
%y 1?>1(r)1{g+ﬁ(scz ) +a+ﬂ(yz 7) }, a+5 1 (3.12.9)

for0 < a,B < 1and o+ B < 1. This shows that 1), g is jointly concave.
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Note that the p-functional also admits the Holder inequality, thus the non-commutative version also
holds. Thus we have

Lemma 18. For X, Y € H>°, r; > 0, % =14 %, we have

T1

Tr|XY|® := min {T—O Tr|X Z|" +T—0Tr|YZl|r2}, (3.12.10)
ZeH;° (T T2

Tr[XY[" := max {E Tr|XZ° — 1y \Y—lz\”}. (3.12.11)
zen;° | To T

Next we show how we can reduce the p,q > 0 case to the p = 0 or ¢ = 0 case. This can be easily done
by the following variational treatment:

21
P

2)
U,,s(A,B) = min { ——Tr|AbKz|” + —L-Tv|z'BE|"
zeHz’ \p+4¢ ptyq
(3.12.12)
: p * Tk 2 q —1 *—1 2
= min Te(Z*K*AKZ)» + Te(Zz7'BZ* ")«
zZeHz® | P+ 4q ~~ P+q ~~

q=0 case p=0 case

The p = 0 or ¢ = 0 case is nothing but the special case of Lieb concavity (building block 1) abd the
special case of Ando convexity (Note that they also in some sense follow from some types of variatial
formulae).

3.13 Exercise III

Exercise 17. Suppose that f : Dom(f) — R is an increasing convex function with f(0) < 0 and
Ay, - A, € H, with Sp(A;) C Dom(f) for j = 1,--- ,m. Suppose that V1, --- ,V,, € M, (C) with
>y Vi'Vy = I, then we have 3 a unitary matrix U € M, (C) such that

f <Z V;Ajvj> <U* ( vj*f(Aj)vj> U. (3.13.1)
j=1 j=1

Proof. We let

Vi 0 -+ 0 A,
X=1: 1 . |€eMuC), A= € Myun(C). (3.13.2)
Vi 0 == 0 Am
Then by Proposition 35 we have
M(f(XFAX)) < M(XF(A)X), VI <k <mn. (3.13.3)
It is easy for us to calculate that
r(TmvAy) 0 0\ SV 0 0
JXTAX) = : .o |, XTfA)X = : P
0 0 --- 0 0 0O --- 0
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Therefore we have
i [f (Z VfAm)
j=1

Therefore, there exists some unitary matrix U € M,,(C) such that

i (Z 1/;.*Ajvj> <U* (Z V;.*f(Aj)vj> U. (3.13.6)
j=1

Jj=1

<\ . VY1<k<n. (3.13.5)

S VA
j=1

]

Exercise 18 (Hadamard inequality). Suppose that A = (a;i)} -, € M,(R) is a positive semi-definite
matrix, then we have

det(A) < [Jaj, Vi<j<n (3.13.7)
j=1
Proof. Let A = LL* where L is a lower-triangular matrix, then
aj; =Y |Lil* > L’ Vi<j<n (3.13.8)
k=1
On the other hand
n 2 n n
det(A) = det(LL*) = |det(L)|” = (H |ij|> =12l <] s (3.13.9)
=1 =1 j=1

which is the desired result. 0
Exercise 19. Suppose A, B € M, (C) are Hermitian matrices with A < B, f is an convex function, then
Tr f(A) < Tr f(B). (3.13.10)

Proof. Since \;(A) is majorized by \;(B) and f is convex, by the Karamata’s inequality we have
Y FOG(A) <D F(B)). (3.13.11)
j=1 j=1

That is Tr f(A) < Tr f(B). 0
Exercise 20. A, B € H>°, ¢t > 0, then

%Tr(B — B'"'AY) < H(BJ|A) < %Tr(BHtA‘t — B). (3.13.12)

Proof. Letg(t) = Tr(B'™A~" — B), then we have ¢/(t) = Tr(B'™ A "log B — B'**A~t1log A), ¢"(t) =
Tr(B' A~ (log B — log A)?). Since A, B > 0, (log B — log A)? > 0, we have ¢”(t) > 0. Therefore,

1
g(t) — g(0) = tg'(0) + §g”(to)t2 > tg'(0). (3.13.13)



3.13. EXERCISE 111 85

Tr(BlJFtA*t—B)

Note that ¢'(0) = lim; 04 -

= Tr(Blog B — Blog A), therefore we have
g(t) — g(0)
t

Similarly, let g(t) = Tr(B — B~ A?), we have ¢'(t) = Tr(B'tAtlog B — B1"tAtlog A), ' (t) =
—Tr(B' " At(log A — log B)?). Since A, B > 0, (log A — log B)? < 0, we have §”(t) < 0. Therefore,

1
Tr(Blog B — Blog A) < == Tr(B'"A™ - B). (3.13.14)

(1) - 3(0) < £3(0). (3.13.15)
Therefore,
g(t)—g 1
Tr(Blog B— Blog A) > 9() ; 9(0) =7 Tr(B - B'"'AY). (3.13.16)
L]
Exercise 21. Suppose that A, B € M, (C), show that
B — i (ﬁﬁﬁ)m. (3.13.17)
m—0o0
Proof. Let X,, Ame%eﬁ, Y, =e 22 Then we have

X7 — Y™ < m|| X — Yinl| max(|| Xonl], [|Yie])™ " (by factorization of A™ — B™).  (3.13.18)

We calculate

o || Xl < e elml o b — oI, [Vinll < € S et
5 T o ! I+ b + Ea + L
2 m2 m . 2m2 0 m2
1
TLRE)
A+ B AB+BA A? A2 B2 1
=1+ — 3.13.1
om2 + pp + gy + o2 +o (mQ) ( 9)
A+B A?+ B*+ AB+ BA 1
=1+ + +o| —
m 2m? 2
A+B (A+B)? 1
=1+ + +ol—).
m Im2 m2
Moreover ) p ,
B B 1
V=r+ 2B UEBE L (L (3.13.20)
m IMm2 m2
e Thus we have
1 1
e =y < o (o) expllall + 131) $ a1321)
m? m?

Then, the required result follows readily by taking m — oo. 0
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Exercise 22. Suppose Ay, --- , Ax € M, (C), show that

€A1+“~+Ak = lim <€%€% . e%)m . (31322)
m—r0o0
Proof.
roof. We denote a oy a At Ag
X, =emem--em, Y,=e m . (3.13.23)

Then we have

1X7 =Y |y < m|| X — Yiully max([| Xonlly, | Yonll)™ ' (by factorization of A™ — B™). (3.13.24)

Note that
A1 ll+-+][Ag |
HXmHQ <e m ) (3.13.25)
flA1++AL ] A I+ Agll o
Yl <e 5 <o
Thus we have o Ll
maX(HXmH2= ||YmH2)m_1 <e S m=) < ellAull++[[ Al (3.13.26)
Moreover
Ay A? 1 Ay A2 1
X I+ —+ — I+ — 4+ —=L
<+ +o 5+ (m2>) (+ +o 5o —
A+ -+ A : AjA 1
—rp ST Z— > S tolne (3.13.27)
1<j<i<k
AL+ -+ A (A1+~--+Ak)2 [4;, A 1
=1+ - + 52 + Z V5 Tol—=]-
1<j<i<k
A+ + A Ar 4o A2 1
Y, =14+t GG L SR (3.13.28)
m 2m? m2
Thus we have
1, — Yoll, < meldute=sant, (L A Al +o( 1)) <2 3.13.29
m — Ymlly < me 2m2z (A, Alll, ol 5 )|, (3.13.29)
1<j<i<k
Thus the required result follows by taking m — oo. [

Exercise 23. Suppose that A € M,,(C), show that det e? = T4,

Proof. We can show this by direct calculation for Jordan blocks. In fact, we can give another stronger
result

Lemma 19. Let A : [ — M, (C) be a operator valued continuous function and assume that the operator
valued C" function ®(t) solves the following equation

d
T X =A0X (3.13.30)

then det ®(t) solves
d
S det® =TrA(t)det &, VEe L (3.13.31)
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Proof of the lemma. Without loss of generality, we assume that ®(¢)~! exists for any ¢ € I, since other-
wise there exists ¢, and ¢y, - -+ , ¢, € C such that 1(t) := 1P (t) + - - - + ¢, P, (t) satisfies ¥(t;) = 0.
Note that ) : I — C" solves the ODE
d

wr= A(t)z, (3.13.32)
thus by the uniqueness of the solution we have ) (¢) = 0 on I. Thus we have ®(¢) is not invertible for
any t € [ thus det ® = 0, which proves the conclusion. In the rest of our proof, we assume that ®(¢) is
invertible for any ¢ € I. Let ®*(¢) be the adjugate matrix of ®(¢), then we have

P*(t) = det P(t)®(t)', Vtel. (3.13.33)

Here the adjugate matrix is defined as the matrix whose (j, 7)-entry is the (4, j)-cofactor of ®(¢). By the
expansion of the determinant, we have

d det ® — lim det O(t + €) — det O(t)
dt e—0 €
=) (~1)=@lim [Tici Pro (t+€) = TTimt Promw (t)
e—0 €
Ueen
sen 3.13.34
=) (=1 Z oty (1) || o (1) ( :
€6y, j#k

= Z D), ,(t)®] (1) Zdetcb ()}, (1) [@ ()], = det D(t) Tr (@' (£)D (1))
= det ®(t) Tr(A(t )(I)(t)(b(t) ) = det ®(t) Tr A(t).
O

In particular, we take ®;(t) = e'de; for A € M, (C) and then ®(t) = et = €', thus we have
4 det e = Tr Adet e'*. Then we know that both

@1(t) = dete! and  y(t) = T4 (3.13.35)
are solutions to
Ly = Tr(A
ae = TrA)e, (3.13.36)
z(0) =1,
which implies that ¢y (t) = @(t) for any t € I. Thus we have deted = !4 for any t € I. In
particular, we have det e = ™4, 0

Exercise 24. Suppose that X € M, (C) is Hermitian and > 0, show that

Tr(DX) — %H(D) > —% log Tr (e~ 7%). (3.13.37)

The equality holds iff D is the Gibbs state i.e. D = (e %)’
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Proof. By the Gibbs variational formula Theorem 3.5.2, we have

logTre*ﬁX = sup {Tr(—ﬁX5> — H(E)} = sup {—BTY(X5> - H<E)}

D density matrix D density matrix (3 1338)

> _BTe(XD) — H(D)

for density matrix . Moreover, the equality holds if and only if

po "
= —. 3.13.3
Tr(e=58X) ( ?)
O
Exercise 25. Suppose A, B € M, (C), show that
A B\ _ [exp(A) fol et Bel=DAq¢
exp( A) = ( exp(A) (3.13.40)
Proof. We claim
m m—1
A B\ (A" C - i Am—1—j
< A) = ( Am)’ Cpp = ZA BA : (3.13.41)
7=0
We can show this by induction. In fact, it follows readily from
A™ C,\ (A B\ (A" A"B+ C,L,A\ _ [(A™ CLig
( Am)( A) - ( o > _ ( ), (3.13.42)
We denote M = (A i), then we have
= 1 (A™ ¢, OSNIPED Sl C—m) (eA N e”‘Be(l_t)Adt)
oxp M — — _ m=0 "m! m=0"m! | _ 0 _
=3 = 2a( ) - (e S g
(3.13.43)
That is because
AmBA!
“‘Bel DAQt = —t)ldt | ———
0 ml ) m!l!
B Z Cim+ DI +1) AmBA!
B = T(m+1+2) Tm+1)I(1+1)
~ (3.13.44)
B Z AmBA!
o !
k=0 m-+l=k (k+1)!
oo m—1 e
AJBAm J cm
= (change the dummy variable) Z Z —_— = Z porl
m=0 j=0 m=0
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Exercise 26. Suppose that A, B € M, (C) are Hermitian matrices, show that
‘Tr(eAJriB)‘ < Tr(eA).

Proof. By Golden-Thompson inequality, we have

|TI' €A+1B

Aral  iB+iaB)T
< Tr(e e 2 ) = Tr(eAeo) < Tre?.

Exercise 27. Suppose that A, B € M,,(C). Show that

m miym 1
e = (el < gl Billo exp(l4ll + 151,

Proof. We denote

1 X0 = Yo'l < ml| X — Yool exp([| All + (| B])
We plug eq. (3.13.49) into eq. (3.13.50), we have

m mym m m 1
e+ = (eAmeBimym || = X7 = Yol < oA, Blll exp(|A]l + [ B])-

89

(3.13.45)

(3.13.46)

O

(3.13.47)

(3.13.48)

(3.13.49)

(3.13.50)

(3.13.51)

]
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Chapter 4

Completely Positive Maps

4.1 Overview

Definition 4.1.1. Let @ : M,,(C) — M, (C) be a linear map, we say:
* @ is bounded, if sup| 4 —; | P(A)[| < oo. We denote ||®|| = sup 4 [|®(A)]-
* O is positive, if ®(A) > 0 for any A > 0.
o & isunital, if (1) = 1.
* O is trace-preserving, if Tr ®(A) = Tr A for any A € M,,(C).
* & is contractive, if ||P(A)|| < ||Al| forany A € M,,,(C) i.e. || @] < 1.
Example 15. ®(A) = Tr(A)I is positive.

Example 16. X € M, ,(C), ®(A) = X*AX is positive. |®| = || X|*.
D is unital <= X*X = I; O is trace-preserving <— X X* = I.

Example 17. ®(A) = AT is positive,

D=1
Proposition 57. ¢ : M,,(C) — M, (C) is positive, then
1] < 2[[ (D). (4.1.1)

Remark 58. In fact if we assume that ® is positive, then we have ||| = ||®(1)
complicated, as we will see in the discusssion of von Neuman inequality (4.8.4).

, but the proof is very

Proof. In fact, we have for any A, A = Re A+ ilm A with Re A, Im A > 0, thus we have
O(A) = P(ReA) +iP(ImA), P(ReA),P(ImA) > 0by P is positive. (4.1.2)

Thus we have
P(A)" = P(ReA) —i®(Im A) = O(A™). 4.1.3)

Let A be a Hermitian matrix, then we have

—[lAllF < A < [JA[|T, (4.1.4)

91
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which means that ®(/) can be viewed as the largest support that can be achieved by ®. Thus we have
(A < [[AlIS)]]- (4.1.5)

Then we assume that A is an arbitrary matrix, then we have

A+ A* 1A —iA*
foca = o (255) + @ (550 | <21amiomi > o < 20wl @i

]

Definition 4.1.2. ¢ : M,,(C) — M,(C). £ € N, idy ® & : M,(C) ® M,,(C) — M,y(C) ® M,(C) is
defined as (using the block matrix form)

(idy @ ©)((Ajk) jmr) = (P(Aj))5 ks 4.1.7)

This is because, we actually have

¢
(Aj,k)ﬁ,kﬂ = Z Eir® Ajr, (4.1.8)
k=1
thus,
(ide © ®)((Aj1)j-1) Z i ® P(A;5) = (®(A10)) s (4.1.9)
7,k=1
We define:

o Ifid; @ ® is positive, then we say ® is (-positive.

e Ifidy ® ® is positive for any { € N, then we say O is completely positive.

o Ifsupyey |lide @ || < o0, then we say ® is completely bounded. We denote |||, = sup,ey |lide @ P|.

It is easy to see that ||| , > || P]|.
o If |||, < 1, we say that ® is completely contractive.
Example 18. o &(A) = Tr(A)I is completely positive.
o &(A) = X*AX is completely positive.
o If U, ® are completely positive, then ¥ + @, aV (a > 0), U o ® is completely positive.

o ®(A) = AT is not completely positive. In fact,

: Ev En El, E By Exn !
idy ® ¢ = = = 0L o) 20, 4.1.10
(idy ® 2) (Ezl En) ~\Eh E5) " \Bw ) = 10,)7 @110
E11 E12 1001 . . . . . .. ..
However, { o~ ") = 0800 | itself is a rank-1 projection matrix, thus it is positive. There-
21 L 1001

fore, @ is not 2-positive.
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Proposition 58. ® : M, (C) — M, (C) is completely positive, then |||, = ||®|| = ||®(1)]|.
Proof. Wehave ||®(I)|| < [|®]| < ||®]|, holds by definition. We only need to show the reverse inequality

1@l < [I12]]-
We take A € M,;(C) ® M, (C) and ||A|| < 1, then we have

I A I A I 0\/I A
Mz(A* 1)2(14* A*A):(A* 0)(0 0)20. (4.1.11)

Thus we have

(idyy ® ) (M) = [idy @ (idy @ D)] ( /f* ?) — ((gil‘zfgf))(gf) iﬂi 23((’?))) >0, (4.1.12)

Thus by Lemma 3, we have

[(id, @ ®)(A)]*[e + (id, @ ®)(1)] 7 [(id, ® ®)(A)] < (id, @ ®)(I) + €. (4.1.13)
That is,
|le + (ide ® @)(1)]7?[(id, ® @) (A)][e + (id, ® @)(1)]7/?|| < 1. (4.1.14)
Thus we have
1(id; @ @) (A)|| < ||le + (ide ® <I>)(I)]1/2H2 =L, @ ®(I) +¢| =||®()]| +e. (4.1.15)

By taking ¢ — 0 we have ||(id; ® ®)(A)|| < ||®(])|| for any £ and || A|| < 1. Thus we have ||id, ® @|| <
|® (1) for any ¢ € N. Therefore, we have ||®|| , = sup,ey [lide @ O < [|@(1)]].
]

Lemma 20. Let A € M, (C) ® M,(C), then A > 0 if and only if A is a summation of “rank-1 block
matrices” (B} Bg)} -

Proof. <: obvious. =: Since A > 0, we have A = X*X for some X € M,2(C). Then we expand this
blockwisely. L

Proposition 59. A € M,,(C), then TFAE:
(1) A>0.
(2) X — X o Alis positive.
(3) X — X o Ais completely positive.

Proof. (1) = (2) follows readily from the Schur product theorem Theorem 2.4.1; (2) = (1)
follows by taking X = (1)1<;x<n and A = ®4(X) > 0.
For (1) or (2) = (3), we recall that
DAX)=V(XRAV, Vie®e e (4.1.16)

Since we have V*(-)V is a completely positive map, thus we have ¢ 4 is completely positive. 0
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4.2 Characteriation of completely positive and £-positive maps

Definition 4.2.1 (Choi matrix theorem). ¢ : M, (C) — M, (C) is a linear map, we define the Choi
matrix of ¢ as

Co =Y Ei;®d(E;;) = (id, ® ®)( E ) € M,(C) ® M,(C). 4.2.1)
i,j=1 =211 Bjk®Ejk

Remark 59. Cy = (id, ® ®)(E). We note that E* = ~E thus E > 0 (E is some multiple of a
projection). In some literatures, F is called the Jones projection.
Therefore, if ® is completely positive, then Cy > 0.

Remark 60. We have the following very useful identity:
P(A) = (Tr ®id,)(Ce(AT @ I)). (4.2.2)

Caution: the trace is taken on the first factor. More generally, we have

B®(A)C = (TraM3)(Ce (AT @ C)). (4.2.3)
This can be understood as
= Tr(E;A)(Eiy) = Y a;®(Ey), (4.2.4)
i,j=1 h.j=1
(Tr@M3p)(Cs(AT © C)) Z Tr(E Mp(®(E;;)C) = a;;BO(E;;)C = B®(A)C.
1,j=1 i,j=1
(4.2.5)

This means that all the information of ® is contained in Cyg.
Remark 61. Two important examples of choi matrices are
id: A A, Cy=> E;®E;=E. (4.2.6)
ij=1
Tr:A— (TrA)I, Cp=I1x1=1. (4.2.7)

Next we will use the Choi matrix representation to deduce a quite important characterization of com-
pletely positive maps on finite-dimensional matrix algebras.

Theorem 4.2.2. ¢ : M,,(C) — M, (C) is a linear map, then TFAE:
(1) ® is completely positive.

(2) (Kraus decomposition or Choi decomposition) ®(A) = > " X:AX; for some X; € My, ,(C)
andr < mn.

(3) Cp > 0.
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(4) (CPin f.d. case is equiv. to m N\ n-positive) id,,, @ P is positive where m A n = min(m,n).

Remark 62. The main difficulties lie in two aspects. Our strategies are: (1) show (3) = (2) using the
“rank-1 decomposition” of Cg to “open up” its structure and then using standard algebraic arguments;
(2) to show that (mAn) = is sufficient to show (Cyv,v) > 0 forany v € C"®QC" by direct computation.

Proof. The proof is totally algebraic construction.

(1) = (3): Cp = (id® P)(E) > 0 follows readily from F > 0 and ® is completely positive.

(3) = (2): By Cp > 0 and the approach of the previous lemma Lemma 20, we have the
“straightening” of C as:

Co =Y Y'Y, Y€ Mum(C). (4.2.8)
t=1
We write
Y, = (v14,-++ ,Ums), Where each v;, is an n-dimensional row vector. 4.2.9)
U1t
We define X, = : € M,,»(C), then we have:
Um,t

* One the one hand, Co =37} | Ejp @ ®(Ejx) = >, Y'Yi.
* On the other hand, we compute Y 7% | Ej, ® X/ Ej Xy = (X EpXo) oy = (X[ ejep Xp) iy =
(U;tvkt)Tk:1 =YY

Taking summation over ¢, we have

Z Ej @ ®(Ej;) =Cp = Zy*yt Z Ej;® (ZX E]kXt> : (4.2.10)

k=1 t=1 k=1

Therefore we have that the action of ® on Fj;, is given by

O(Ej) =Y X[ EjX,. (4.2.11)

=1
That is,
A) =Y X;AX,, VA€ M,(C). (4.2.12)
=1
(2) = (1) is obvious by the previous example.

(4) = (3): We take arbitrary v € C™ @ C", we need to show that (Cpv,v) > 0.
In fact, we have

m

v = Z Zvjkej R e = Z (Z vjke]) ® e = Zej ® (Z Ujk€k> . (4.2.13)
k=1 \j=1 j=1 k=1

=1 k=1

Therefore, we can always write

v = ij ®y;, x;€C"y; €C", r<min(n,m)=mAn. (4.2.14)

j=1
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We take vy, - - - , v, to be the O.N. basis of C" and let Tr be the trace on M,,(C) or M,,(C), then we have
(Cov,v) = (Tr@Tr)(Coovv™)

=) (Tr@Tr)(Cox;z) @ yu5)

G k=1
by the previous remark - * *
RS Z Tr[® () (ysvk)]
) k=1 (4.2.15)
dilate again % * * *
= (Tr @ Tr)[(vgv}) @ @(2x77) (V05 @ y5y5)]
G k=1
— (Tr® Tr) ( > ([d® @)(vw] ® xkx;)> ( > v ® yjyzz) > 0.
g k=1 Jk=1
2073;(4) 26
1) = (4) follows readily by definition. L]
y by

Another very important characterization is the so-called Stinespring dilation theorem. It can be seen
as a GNS construction in terms of operator algebras.

Theorem 4.2.3 (Stinespring dilation theorem). ® : M,,(C) — M,(C) is a completely positive map,
then there exists a finite dimensionl Hilbert space H. Then there exists a unital x-homomorphism 7 :
M,,(C) — B(H) and a bounded operator V : C" — H such that |®||, = ||V||* and for any A €
M,,(C), we have

O(A) =V*r(A)V. (4.2.16)

Proof. This is in fact the standard procedure of GNS construction. We denote #, = M,,(C) @ C™ and

we define
(AR z,BRy):= (P(B*A)x,y). (4.2.17)

This is a Hermitian bilinear form on M,,(C) ® C". Since ® is completely positive, we know that the
bilinear form is positive semidefinite, thus the Cauchy-Schwarz inequality holds.
We next deal with the null space. We define

N ={zx e Hy: (x,2)g =0} C H,. (4.2.18)

Then H := Ho/N is a Hilbert space with respect to the inner product (-, -)q since it becomes now strictly
positive. We define

7: M,(C)— B(H), n(A)(Bx+N)=ABx+N. (4.2.19)

It is easy to verify that 7 is in fact a x-homomorphism and ||7(A)|| < ||A]l.
In fact, ® “acts like” an identity map on C™, thus we define

V:C"—H, Ve=Ixaz+N. (4.2.20)
Then we have

(Vr(A)V)(x) = (V7(A)I @z+N) =V (Az+N)=D(A)z. (4.2.21)
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Here, the last equality is because

(@(A)z,y) =A@z, I®Yy)o= (A2 +N,Vy)o = (V' (A®@2+N),y). (4.2.22)
We can also compute
Proposition 58
IVal® = (@(D)a,z) < @D [l]* =" || @]l (4.2.23)
Thus we have ||V||* = [|®||,, since the equality of the Cauchy-Schwarz inequality can be achieved. [

Remark 63. This is an abstract construction and does not rely on the structure of the matrix algebra.
Thus this theorem itself is also true for general von-Neumann algebras and even C*-algebras.

Corollary 11. Let ® : M,,(C) — M, (C) be a completely positive map, then there exists X; € M,, ,(C)
such that

O(A) =) X;AX;, VA€ M,(C). (4.2.24)
j=1

Remark 64. This corollary implies that the Choi matrix decomposition can also be derived from the
Stinespring dilation theorem.

Proof. By the above theorem, we have 7 : M, (C) — B(H) = M,(C), ®(A) = V*r(A)V. But we note
that the A\ above is trivial in this case, thus 7 is in fact a *-isomorphism. Therefore, we have ¢ must be
some multiple of n. Thus 7 must be:

A
A , Vi.C" = C' e M, (C). (4.2.25)
A
We write V' = (X1, -+, X,.), then we have
X7\ /A .
(A) = | (e X)) =) XTAX (4.2.26)
Xr A i=1

]

Example 19. Two sets of Kraus operators { X;}’_, and {)? ¢}, represent the same complemently posi-
tive map, if and only if they are related by a unitary transform, i.e.

(X’l’ - ,5(:67 e ’Xs) — (Xh - ’Xj7 . 7XT)U' (4.2.27)
Here U is unitary and the smaller set is padded with zeros.

Proof. We note that

Q(A) =) X;AX;= > Uy (XjAXp) U= ) (Z UMU;j> X;AX, = ) X AX,
=1 gk=1  ¢=1 jk=1 \ (=1 k=1
=Y X;AX; = O(A).
j=1
(4.2.28)
The above derivation holds if and only if UU* = [ i.e. U 1is unitary. [l
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Remark 65. In physics literatures, the invariance of the Kraus representation under unitary transforma-
tions is called the “gauge invariance” of the quantum channel.

Next we will give a quite different characterization of k-positive maps <= (P® [)Co(P® 1) > 0
for any projection P with rank k.

Proposition 60. ¢ : M,,(C) — M, (C) is a linear map, then ® is k-positive <= (P®1)Ce(P®1) >0
for any projection P with rank k.

Proof. We take vy, - - - , vy be the orthonormal basis of PC". For any v € C™ @ C",

k k
<(P®I)C¢(P®I)U,’U> > 0 <— <C¢Zﬂj ®xj,Zvj ®£L’]> > O,Va:j e C". (4229)

J=1 Jj=1

This is equivalent to

k k k
Z (Tr ® Tr) (Covjv; @ xj20) = Z (id @ Tr)(®) = Z Tr(®(vjvj)zz;) > 0. (4.2.30)
=1 Jib=1 jb=1

This is equivalent to
o [(id ®@ ®)(vev})] x> 0. (4.2.31)

Thus it is further equivalent to ® is k-positive. ]

Remark 66. We can also see from above that the Choi matrix representation is indepedent of the choice

of the basis. Another way to understand this is by direct inspection: For U = (uy,- - - ,u,,) unitary, if we
have
Co = (id, ® ®)[(U @ U)E(U @ U)*] = (id, ® ®) <Z ut ® uu ) , (4.2.32)
1,7=1
then we have
(Tr ®id)(Co (AT @ 1)) Z Tr(uiuf AT) @(wu)) = O(A) (4.2.33)
=1 =ufAu;

which also recovers the action of the original map ® on A.

We can readily see how the above proposition can be useful to characterize the k-positivity.

Theorem 4.24. 1 <k <n, A (1 — 1)1 Tr(A)I +tA, t € Ris k-positive <> t € [——=,1].
Proof. Let ®,(A) : (1 —¢)+ Tr(A)I + tA. Then we can compute the Choi matrix as
1
Co, = (1 — )~ +LE. (4.2.34)
n

By the characterization Proposition 60 above, we have ®, is k-positive <= (P ® I)Cq,(P ® I) > 0
for any projection P with rank k. That is,

(1-— t) (PRI)+t(PRI)EP®I)>0. (4.2.35)
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Note that £ is independent of the choice of basis. Then without loss of generality, we can take the basis
corresponding to the projection P, then under this basis we actually have the following very simple form:

11

.0 0
(PoNEPRI) =iyt | (4.2.36)
kxk
0 0

Thus we have that (P ®I)E(P®1) is arank-1 projection matrix. Therefore, we have eq. (4.2.35) holds
if and only if

1
(1-— t)ﬁ +kt>0, 1—t>0, (4.2.37)
and hence )
t — 1] . 4.2.38
< [ nk—1’ } ( )
O

Remark 67. Inspired by the idea above, we actually have:

» ®, is positive if and only ift € [~ =, 1] by taking k = 1.

* O, is completely positive if and only if t € [—ﬁ, 1] by taking k = n (recall that from (4) in

Theorem 4.2.2, we know that @, : M,,(C) — M, (C) is completely positive <= itis (m A n)-
positive).
For the last part of this section, we will give a simple convexity inequality regarding the completely

positive maps and their adjoint maps.

Definition 4.2.5. We denote * as the adjoint map of ® : M, (C) — M,,(C) with respect to the Hilbert-
Schmidt inner product.

Proposition 61. It is clear that
o ¢ is k-positve <= P@* is k-positive.
* ® is completely positive <= ®* is completely positive.

* & isunital <= D" is trace-preserving.

Remark 68. Caution! In general, we de not have ||®|| ., = ||®*|,. To see this, if  is unital, then
1@, = 1) = ||| = 1, but ||®*|| , can be numbers other than 1.
The example above in Theorem 4.2.4 is both unital and trace-preserving.

Theorem 4.2.6 (Majorization inequality). Let A € H,, ® : M,(C) — M, (C) be a positive (we only
need 1-positive here), trace-preserving and unital map. Then we have ®(A) < A.

Proof. Let Ay > --- > ), be eigenvalues of ®(A), Py is the orthogonal projection onto the eigenspace
spanned by the first k& eigenvectors. Then we have
k ®* is TP and unital

k
> N = Te(P0(A)) = Tr(®* () A) < sup  Tr(TA) "CMTEEN T (A),

0<T<1,Tr T=k i
(4.2.39)
By trace-preserving we have Tr(®(A)) = Tr(A), thus we have ®(A) < A. O

j=1
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Corollary 12. A € H,, ® : M, (C) — M,(C) is a unital and trace-preserving map. [ is a convex
function, then we have
Tr f(®(A)) < Tr f(A). (4.2.40)

Proof. Recall that A < B if and only if Tr f(A) < Tr f(B) for any convex function f. O
Corollary 13. ® is a unital and trace-preserving positive map, then ||®(A)||, < ||Al| .

1 1
C(()r(;llary 14. B >0, ®(A) == [;© ﬁ—gBAﬁ—ﬁBd/\ which is trace-preserving and unital. If A € H,, then
d(A) < A

4.3 Conditional expectations
Definition 4.3.1. Ler 2 be a unital (which means [ € 1) x-subalgebra of M, (C). We say Ey is the
conditional expectation onto 2 (or given ), if

* By : M,(C) — 2 is a positive map;

» FEyisunitali.e. Ey(I) = 1I;

» Ey(B1AB;) = B1Ey(A)B; for any By, By € 20and A € M,(C). In particular, Ey(A) = A for
Ae

We say a conditional expectation Ey is a trace-preserving conditional expectation (TPCE) if it also
satisfies

Tr(Ey(A)) = Tr(A), VA e M,(C). (4.3.1)
Remark 69. o It is easy to see that E3(A) = FEy(Ey(A)) for any A € M,,(C), i.e. E3 = Fy.
——
e
* By noting that
Ey [(A = Eq)"(A— Ea)] 20 (4.3.2)

we see that Fy(A*A) > Eg(A*)Ey(A).

 If Ey is the trace-preserving conditional expectation, then we have Tr(A*A) Tr Ey(A*A) >
Tr[Ey(A*)Ey(A)], ie. ||Ea(A)ll, < ||All,. In other words, Ey can be viewed as an orthogo-
nal projection: (M, (C),||-[,) = (2, |-|l,). By the uniqueness of orthogonal projection, we know
that the trace-preserving conditional expectation is unique.

* In general, if we have a faithful state o, we can also use the trace to define the weighted inner
product and the corresponding Hilbert space L*(c), then the mapping Fy : L*(M,(C),o) —
L3(2U, o) is an orthogonal projection as well as a conditional expectation.

Theorem 4.3.2 (von Neumann’s double commutant theorem). Let 2 be a unital x-subalgebra of M,,(C).
We define the commutant of 2l as

A ={X e M,(C): AX = XA, VA € AU}. (4.3.3)
Then ' is also a unital x-subalgebra of M,,(C). Likewise, we define the double commutant of A as
A" =) ={X e M,(C): AX = XA VA e A} (4.3.4)
We have 21" = 2.
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Proof. exercise 28. O

Definition 4.3.3. e Let U be a group consist of unitary matrices in 2A. We say U is the generating
unitary group of A if A = Span{U € U}.

* X =30 Ejjn Z =diag(L,w, -+ ,w"") wherew = e’ Note that X and Z are both unitary
matrices.

e We consider the finite set
U={w'XIZF: . k1=1,2-- n} (4.3.5)

Obviously this is in fact a finite unitary group. Moreover, since { X’ }1<;<, already linearly gener-
ates M, (C), this is in fact a finite and generating unitary group of M, (C).

* Note that any finite dimensional x-algebra is a direct sum of matrix algebras M,,(C), thus the finite,
generating unitary group of 2l always exists.

The next theorem gives a very important description of the TPCE. Briefly speaking, in finite dimen-
sion, the TPCE is a convex combination of conjugations using unitary matrices in 2I'.

Theorem 4.3.4. Let A be a x-subalgebra of M, (C) with Ey being the TPCE. Then there exists
Ui, -, Upn € A being unitary matrices in ', such that

1 m
= > UAU;, VA€ M,(C). (4.3.6)
j=1

Proof. Let U being the generating unitary group of 2’ with |/| < oo. We define

E : M,(C) — M,(C), E(A)= |wZUAU* (4.3.7)

veu

For any Q € U C 2, we have

« U= QUis abljectlon (left-translation) on U/ 1 1
QE(A | Z QUAU i Y UAQ'U)
veu Ueld (4 3 8)
UAU* E
=i S varQ =B
veld

Thus E(A) commutes with ¢/ and thus commutes with the whole 2(', i.e. E(A) € (A”) Theorem 32 o
Therefore £ : M, (C) — L. It is clear that £ is positive. Moreover, F(I) = I and for By, By € 2,

Bi,By € 1

E(B1ABs)
FUAR i

Z UB1ABU*

veu

> BIUAU"B, = BE(A)B. (4.3.9)

W bet

Thus E' = Ey is a conditional expectation given 2. We can take m = |U{|. In fact, it is easy to verify that
E'is trace-preserving and thus Eg is the unique TPCE. 0
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Corollary 15 (Finite dimensional TPCEs are CPTP). By the above characterization Theorem 4.3.4 of

the TPCE, we actually have Eqy is a CPTP and unital map. In particular, we have || Ey(|, = || Eal| =
[Ex(D)] = 1.

Example 20. Sometimes we care about the adjoint of the conditional expectation. Since the conditional
expectation itself is unital, the adjoint of the conditional expectation is a positive and trace-preserving.
Physically speaking, this corresponds to the Schrodinger picture acting on the density matrix.

With respect to the Hilbert-Schmidt inner product, we have

Tr(Ey(A)*B) = Tr(A"Ey(B)). (4.3.10)
* The adjoint of Fy is also an idempotent map. This is because
Te(E5(A)" B) = Te(E3(A)* Ea(B)) = Te(AE3(B)) = Te(A Ea(B)) = Tx(E3(4)'B)
43.11)
forany A, B € M, (C). Thus we have E? = Ej},.
* The adjoint of FEy is a bimodular map. For any C, Cy € 2, we have
Tr(Eq(C1ACY)"B) = Tr((CLAC,)"Ex(B))
— Tr(A*C Ea(B)CY) £ i a bimodular map, A s a x-subalgebra 1, (A*Ea(CIBCE))
= Tr(Ey(A")CTBC3) = Tr(C3 Ey(A)C1B) = Tr([C1Ey(A)Co] " B)

(4.3.12)
forany A, B € M,(C). Thus we have the bimodular property of the adjoint of the conditional
expectation

Ey(C1AC,) = CLE(A)Cy, YA € M,(C),Cy,Cy € 2 (4.3.13)

* In general, the adjoint of the conditional expectation is not a conditional expectation. This is
because the adjoint of the conditional expectation is unital if and only if the conditional expectation
is a trace-preserving i.e. itself is a TPCE. We have Proposition 62.

Proposition 62. Let 2 be a x-subalgebra of M, (C). The TPCE Ey is a self-adjoint map w.r.t. the
Hilbert-Schmidt inner product.

Proof. By example 20, we know that £y is a unital, positive, idempotent and bimodular map. We also
know that £} : M, (C) — 2 is a trace-preserving map since Eqy itself is unital. Thus we have E"jﬂ falsa
TPCE onto 2(. By the uniqueness of the TPCE, we know that I = Eqy, i.e. Ly is self-adjoint w.r.t. the
Hilbert-Schmidt inner product. 0

Example 21. In fact, with the help of the adjoint of conditional expectations, we are able to say more
about the “weight” of the L* space corresponding to the orthogonal projection as discussed in Re-
mark 69.

We define the following positive linear functional

p(X) = Tr(XEY(I)), VX € M,(C). (4.3.14)
Then Eqy is a D ,-preserving conditional expectation. That is because

p(Ex(A)) = Tr(Ex(A)Ey(I)) = Tr(AEY(I))

Eg isan i_dempolent

(4.3.15)
Te(AEL(I)) = p(A), VA € M,(C).

Thus Ly is a D ,-preserving conditional expectation.
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Next we discuss two most fundamental examples of conditional expectations. The first is the so-called
pinching map and the second is the so-called partial trace.

Definition 4.3.5 (Pinching maps). Let {P]}T:1 be a family of orthogonal projections on C" such that
Z}n:l P; = I i.e. a set of unital decomposition. We define the pinching map as

E : M,(C) — M,(C) ZPAP (4.3.16)

Then, it is easy to verify that E is in fact the conditional expectation from M, (C) onto the unital *-
subalgebra

A =P PM,(C)P;. (4.3.17)

Intuitively, the pinching map is equivalent to taking the “block diagonal” of the matrix A with respect to
the orthogonal projections { P;}7.,

Definition 4.3.6 (Partial trace). Consider M,,(C) ® M,,(C), then Tr ®id is a linear map from M,,(C) ®
x-subalgebra

M,(C)to M,(C)=2CI® M,(C) C  M,(C)® M,(C). We define the partial trace as
Tri(A) == (Tr@id)(A), A € My (C) @ M,(C). (4.3.18)

Note that
(Tr ®id)(A® B) = Tr(A)B = Tr(A)I ® B. (4.3.19)

Therefore, we have % Try = % Tr ®id is a conditional expectation.
Similarly, we can define the partial trace Tro(A) = (id®Tr)(A) from M,,(C) ® M, (C) to M,,(C) =

x-subalgebra

M,(C)®CI ~C  My(C)® M,(C). Then +id @ Tr is a conditional expectation.

Remark 70. From the structural perspetive, since we have for any finite-dimensional unital x-subalgebra,

we can write
m

A= P M, (C)@ClLy, Y nmj=n. (4.3.20)

J=1 J=1

Thus any conditional expectation can be viewed as a combination of the pinching map and the partial
trace. More explicitly, we can write

@ (idy, ® Tr)(PAP;) @ Iy € M,o(C), A € M,(C). (4.3.21)

4.4 Schwarz inequalities

In this section, we will discuss the convexity inequalities related to positive maps. Basically, we will
apply the operator and trace Jensen inequalities to the positive maps.

We will first give an important technical lemma with respect to the structural properties of positive
maps onto commutative *-subalgebras.
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Lemma 21. Suppose 2 is a commutative x-subalgebra of M,,(C) and ® : A — M, (C) is a positive
map. Then ® is a completely positive map.

Remark 71. Basically, we have that positive =—> CP for commutative x-algebras.

Proof. Note that 2 = @le CI,,;, we may denote the family minimal projections as {Pj}ﬁz1 Suppose

A € My (C) ® 2, by the structure of 2, we may write A = @ﬁzl A; ® P;. Since this operator is “block-

diagonalized” with respect to certian basis, we have A > 0 = each A; > 0. Thus ®(A;) > 0 for each

j and thus (id; @ ®)(A) = Z§:1 A; ® ®(P;) > 0 and hence @ is completely positive. O
We first deal with the case of general matrices before moving on to the case of Hermitian matrices.

Proposition 63. Suppose that ¢ : M,,(C) — M, (C) is a 2-positive map. Then for any A € M,,(C),

(A D(A) < ||| P(A™A). (4.4.1)
Moreover, ||®|| = || D(1)]].
Proof. By the fact that ® is 2-positive, we have:
r A\ (1 I A (1) +e D(A)

By the Schur complement lemma Lemma 3 we have

D(A*A) + & > DA [D(I) + £ 1B(A) > 0 = B(A™A) + & > D(A)*[|B(I) + ]| ' B(A) > 0.

(4.4.3)

This indicates that
[B(1)[B(A*A) > B(A) B(A) (4.4.4)
by taking limit ¢ — 0. Note again that ®(A*A) < ||A||*®(I), we have that | ®(A)| < ||A||||®(I)|. Thus
we have [[(1)]| > [[@]] i.e. [[@]] = [|®(1)]] O

Remark 72. For non-Hermitian case, we see that the “square” is essential. Thus we need to assume that
D is 2-positive to “open up” the structure.

Theorem 4.4.1 (Choi-Schwarz inequality for positive maps). Suppose that A C M,,(C) is a x-subalgebra,
¢ : A — M,(C) is a positive map with ||| < 1 and f : Dom(f) C R — R is an operator convex
function with f(0) < 0and Sp(A) C Dom(f). Then we have

F(®(A)) < B(f(A), VA€ AN, (4.4.5)

Lemma 22 (Choi-Schwarz inequality for CP maps). Suppose that ® : M,,(C) — M, (C) is a completely
positive map. Let f be an operator convex function with f(0) < 0 and Sp(A) C Dom(f). For conve-
nience we assume further that ||®|| < 1. Then we have the Schwarz inequality eq. (4.4.5) holds for any
A € H,,.

Proof of Lemma 22. By Stinespring dilation theorem Theorem 4.2.3, we have

O(A)=V*r(A)V, w: M, (C)— B(H) *x-homomorphism, V : C" — H bounded linear operator.

(4.4.6)

Moreover, ||®|, = |V||* and ||®|| < 1 implies that V*V < 1. By operator Jesnsen inequality Theo-
rem 2.2.2, we have

fVim(AV) <V f(r(A)V = Vir(f(A)V = S(f(A)). (4.4.7)

]
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Corollary 16. Lemma 22 holds for any unital x-subalgebra 2 of M, (C).

Proof of Corollary 16. We take the TPCE Ey from M,,(C) to 2, then ® o Ey is a completely positive
map from M,,(C) to M, (C) by “the fact that f.d. TPCEs are CPTP” (see Corollary 15). O

Proof of Theorem 4.4.1. Let C*(A) be the unital x-subalgebra of 2 generated by A and I, then it is clear
that C*(A) is commutative. By Lemma 21, we have ®|c-(4) : C*(A) — M,(C) and Ec-(4) : A —
C*(A) are completely positive maps. Thus we have ®|c«(4) 0 Ec«(4) is a completely positive map. Then
the result follows from Corollary 16. [

Remark 73. The proof strongly depends on the structural properties of positive maps on commutative
x-subalgebras, which significantly strengthens the result in the sense that we do not need to assume ® is
completely positive but only 1-positive (in the case of Hermitian matrices).

Corollary 17 (Kadison-Schwarz inequality). ® : M,,(C) — M, (C) is a positive map with ||| < 1,
A € H,,, then we have ®(A)? < ®(A?).

Corollary 18. ¢ : M,,(C) — M, (C) is a unital positive map with ||®|| < 1, then we have ®(A)~! <
O(A™Y) forany A > 0.

Proof. t — t~" is operator convex on (0, 0c), thus t — f(t) := ;1= — < is operator convex on (0, co) for

any £ > 0 and we have f(0) = 0. By Choi-Schwarz inequality Theorem 4.4.1, we have

(BP(A) &)t —e ' <P(A4e) ety -l (4.4.8)

Thus we have
(D(A) +2) ' <D((A+e) ) +e ') — et PN (A4 ). (4.4.9)
Taking limit e — 0, we have ®(A)~! < (A1), O

Comparing this result with Proposition 63, we have a natural question: can we generalize the Choi-
Schwarz type inequality to the case of non-Hermitian matrices? The answer is yes, however, as we
may expect, we need to assume that the map is 2-positive. Moreover, since our strategy is to use the
“Hermitian-dilation” of the non-Hermitian matrices, we need to assume that the operator convex function
is even.

Theorem 4.4.2. Let  : M,,(C) — M, (C) be a 2-positive map with |®|| < 1. f is an operator convex
function with f(0) < 0 and Sp(|A|) C Dom(f) = (—a,a) (a > 0). Assume that f is an even function,
then we have

F(2(A)]) < @(f(1AD) (4.4.10)

Proof. We have A) is Hermitian and id; ® P is positive, thus by Choi-Schwarz inequality Theo-

r o
f(@(g)* (ID(OA)> < (id; ® ®) {f (12 ’S)} : (4.4.11)

rem 4.4.1 we have
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Since f is even, we have the following functional calculus

(0 D)ol B
(e =116 D 2 )

(R 6)

[=s(5" 1)

(4.4.12)
Then eq. (4.4.11) becomes
f(12(A))) 0 . FAAD 0 _ (2e(f(A]) 0
(I otan) < @e (TG0 ) = ("B aay) @
Thus we have
f(2(A)]) < O(f(|A]). (4.4.14)
l

Remark 74. Take f(t) = t%, we have |D(A)|> < ®(|A|*). Thus we have ®(A)*®(A) < B(A*A) for
|®|| < 1 and 2-positive. This is just what we have proved in the original version of Schwarz inequality
Proposition 63.

We can also apply the Jensen trace inqualities Theorem 3.3.1 and Proposition 34 to positive maps to
obtain the so-called “trace Schwarz inequality”.

Lemma 23. ¢ : M,,(C) — M,,(C) a completely positive map with ||®|| < 1. f : Dom(f) — R a convex
(no need to be operator convex) function with f(0) < 0. Then we have

Tr f(®(A)) < Tr d(f(A)), VA€ H,,. (4.4.15)

Proof. It follows from the Stinespring dilation theorem Theorem 4.2.3 and Jensen trace inequality Propo-
sition 34 in the similar way as the proof of Lemma 22. [

Then by imitating the proof of Theorem 4.4.1, we can easily obtain

Theorem 4.4.3. & : M,,(C) — M,(C) is a positive (no need to be completely positive) map with
|®|| < 1. f: Dom(f) — R is an operator convex function with f(0) < 0 and Sp(A) C Dom(f). Then
we have that for any A € H,, with sp(A) C Dom(f),

Tr f(B(A)) < Tr d(f(A)). (4.4.16)

4.5 Strong subadditivity of entropy functionals
Example 22. Let D be a density matrix in M, (C) @ M,,(C) @ M,(C) (a tripartite system), we consider

D12 = TI'g(D) < Mn(C) & Mm(C), Tr D12 = 1,

4.5.1
D23 = TI'l(D) S Mm(C) X MZ(C), Tr D23 = ]., ( )
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as well as
Dy = Tri3(D) = (Tr®id @ Tr)(D) € M,,(C), TrDy=1. (4.5.2)

That is, D15, Do3 and Dy are still density matrices in the corresponding matrix algebras. We consider
the entropy functional

H(D) = — Tr(Dlog D). (4.5.3)

We ask: what is the relation between the entropies of these density matrices?
The answer is given by the strong subadditivity of the entropy functional, which states that

H(D) + H(Ds) < H(D12) + H(Da3). (4.5.4)

Example 23. In this example, we will give some techniques for computing the partial trace. Let D €
®f:1 M, (C)and A C {1,--- ,k}. We denote

Dy = Trpe(D) = Trgy. ppa(D) € Q) M, (C). (4.5.5)
i€A
Then we have
Tr(Df(Da)) = Tr(Daf(Das)). (4.5.6)

That is because,

Tr(A® B)Tr C)=Tr(A® B) (I ® Try C)) = Tr ATe(BTr, C) = Tr(Tr (A ® B) Try C).
(4.5.7)

Thus in general, we have
Tr(D Try C) = Tr(Try D Try C), where Try C on LHS should be understood as I @ Tr1 C. (4.5.8)

For general conditional expectations, we can do the same calculations. For simplicity, we consider again
the partical trace which we now write as E, denoting the conditional expectation that keep the first two
factors. A concrete example is

Tr(D1a f(D2)Dasg(Ds)) = Tr(£12(Dia) f(D2) Dasg(D2))
FEigis self—adjoirgby Proposition 62 TI‘(D12E12 [f(DQ)DQgQ(DQ)])

D1a f(D32) E12[Das)g(Ds)) (4.5.9)
= Tr(Di2f(D2)D2g(D2)) = Tr(Dio B[ f(D2) D2g(D2)])

Eq is sei—adjoint TI(EQ(Du)f(DQ)D?g(DQ)) — Tr(D2f(D2>D29<D2))

FE12 is a bimodular map
= Tr(

It is easy to see that similar calculations can also be generalized to abstract conditional expectations.

Theorem 4.5.1 (Strong subadditivity of entropy functionals). Let D € M, (C) ® M,,(C) ® M;(C) be a
density matrix, then we have

H(D) + H(Dz) < H(D12) + H(Do3). (4.5.10)
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Proof. Note that

H(D72) + H(Ds93) — H(D) — H(D>)
= — TI"(D12 IOg D12) — TI'(DQg 10g D23) + TI'(D IOg D) + TI'(DQ 10g Dg)

byl _ y(Dlog Dio — Dlog Doy + Dlog D + Dlog Dy)
= Tr(Dlog D — Dllog D13 + log Do3 — log Ds)) (4.5.11)

X
D|=—— ) —logTr X
HTrX) oe

X := elog Di2+log Da3—log D3

= Tr(DlogD—DlogX):H(

by the non-negativity of relative entropy

> —logTr X.

Thus it remains to verify that Tr X < 1. This follows readily from the Golden-Thompson-Lieb inequality
Theorem 3.8.2

Theorem 3.8.2 [°°
Tr(X) < / Tr(Dia(t + Do) ' Dag(t 4+ Do)~ 1) dt
0
(4.5.12)

example 23 / Te(Dy(t + Do) Da(t + Do)~
0

= TI'DQ =1.

Corollary 19 (Subadditivity of entropy). D € M, (C) ® M,,(C) is a density matrix, then we have
H(D) < H(D;) + H(D,). (4.5.13)

Proof. We view D as a matrix in M, (C) ® M,.(C) ® M,,(C). Then D15 = Dy, Doz = Do and Dy = 1.
Then it follows from Theorem 4.5.1 that

H(D) < H(Dyy) + H(Dy3) — H(Dy) = H(Dy) + H(Dy) — H(I) = H(Dy) + H(D,). (4.5.14)

O]
4.6 Generalized data processing inequality
In this section, we consider the invertible density matrix D € H> 0,
We define the left action and right action of D on M,,(C) as follows:
Lp: M,(C)— M,(C), X— DX, Rp:M,C)— M,(C), Xw— XD. (4.6.1)

Definition 4.6.1 (Quasi-entropy). Let Dy, Dy € H> be two invertible density matrices, f : [0,00) —
[0, 00) be a operator monotone function with f(0) > 0, we define the quasi-entropy as

HM(Dy[|D2) 1= Te(D3 A f(Lp, R (ADS)

— (f(Lp,Rp\)(AD3), AD3) (4.6.2)
Tr

(A" f(Lp, Ry} (Rp,(A)))
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Remark 75. Without ambiguity, we can also write
Tr <D§ A*f(Lp, Ry} (AD; )) Tr(D§ A*f(Lp,Ry;!)(A) D} ). (4.6.3)
That is because, for polynomial f, we obviously have
J(Lo,Rp)(A)D3 = f(Lp, Ry, 1)(A)D; = f(Lp,RpY)(AD;). (4.6.4)
Definition 4.6.2 (Schwarz mapping). We say ® is a Schwarz mapping, if it satisfies
O(A")P(A) < D(A*A), VAe M,(C). (4.6.5)

Example 24. By Proposition 63 or Theorem 4.4.2, we have that any 2-positive map with ||®| < 1isa
Schwarz mapping.

If © is a CPTP map, then ®* is a CP and unital map with | ®*| , = ||®*|| = [|®*(1)|| = 1, thus ®* is
a unital Schwarz mapping.

Theorem 4.6.3 (Generalized data processing inequality). Let Dy, Do € H>° be two invertible density
matrices, ¢ : M, (C) — M,,(C) be a unital Schwarz mapping and f : [0,00) — [0, 00) be an operator
monotone function with f(0) > 0. Then we have

H{@*(D1)[[@*(D2)) > Hy™(Dy]|Dy). (4.6.6)
Proof. Without loss of generality, we assume that f(0) = 0 since
H{\\(D1||Ds) = H{ (Dy|| D) + A Tr(A*ADs). (4.6.7)
We assume further that &*(Dy) > 0. We define a linear map
V: M,(C) = My(C), X®"(D,)% s &(X)D2I, X € My(C). (4.6.8)

This map is well-defined since ®*(D5)? is invertible. We have

1112 ® is a Schwarz mappin
|ec)pz|" = T(pecxyec) ST T (Dae(X X)) = Te(@* (Dy) (X7 X))
(4.6.9)
2
= |xe 02}, vxeMm@ = V<t
Thus we can estimate
1 1 1 1
(Lp, R, VX®*(Dy)>, VX®*(D,)2) = (Lp, R, ®(X)D3, ®(X)D3)
= Tr(D,®(X)P(X™))
Schwarz
< Tr(Dd(X*X)) (4.6.10)
= Tr(®* (D) X*X)
= (Lo~ (p) Ry} ) X O (D2) 2, X*(Dy)?).
Thus we have
V'Lp, R,V < Lo (o) Ryl - (4.6.11)
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By the operator monotonicity of f, we have
f(V'Lp, R V) < f(Lar () Ry (y))- (4.6.12)

By the equivalence of operator convexity and operator monotonicity Theorem 2.2.3, we have that f is
operator convex, thus

V*f(Lp,RpV < f(Lo+ () Ry?

o) (4.6.13)

By the operator monotonicity of the mapping Tr <®*(D2)%A*(')A<I>*(D2)%), we have

Tr<q>*(D2)%A*V*f(LDIRB;)VAcD*(DQ)%) < Tr(q> (D)2 A" f (Lo (0, Ry ) ) AD*( Dg)%)
6.

(4.6.14)
It follows readily that the generalized data processing inequality holds.
For ®*(D,) > 0, we only need to consider *(Ds) + ¢ (¢ > 0) and we have
H}N®"(Dy)||®%(Dy) +¢) > HyW(D1|| D + ). (4.6.15)
Then we take ¢ — 0.
O]
Corollary 20. If ®* is a quantum channel (CPTP map), then we have
HN®(D))||®(D2)) < Hy V(D1 Dy). (4.6.16)

Proof. Recall example 24, we have ®* is a unital Schwarz mapping, thus we can apply Theorem 4.6.3 to
obtain the result. [

Corollary 21. Let Dy, Dy € H>° be two invertible density matrices, ® : M, (C) — M,,,(C) be a CPTP
map, then

H(®(Dy)||(Dy)) < H(Dy|[Ds). “4.6.17)

Proof. Take f(t) =t for € (0, 1), then by Theorem 4.6.3, we have
Tr(A*(ch(Dl)R;(lDz))aRq)(Dz)(A)> > Te(*(A) (Lp, Rp!)*B(A)). (4.6.18)
Note that log ¢ = lim,_,o ==, thus we have

Tr (A* log (Lq,(Dl)R;(lDQ)) + Tr(A*A@(Dg))Rq,(DQ)(A))
> Tr(®*(A)log(Lp, Ry ) @(A)) + Tr(P(A)*@(A)D(D,)).

(4.6.19)

We take A = I, then
Tr[(log @(D;) — log ®(D3))®(D3)] > Tr[(log Dy — log D3)Ds]. (4.6.20)

]
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4.7 Quantum Perron-Frobenius theorem

In this section we consider the so-called strictly positive and positive irreducible matrices. Basically, we
will study their spectral properties. Next we will see that we can actually put these analysis into a more
abstract framework of strictly positive maps and positive irreducible maps.

Definition 4.7.1. We say a real matrix A € M,(R) is positive or non-negative (strictly positive) if
a;; > (>)0foralll <1i,j <n, denoted as A > (>>) 0.
We denote |A‘+ = (’aij’)lgidgn.

Lemma 24. A, B € M,(C)and B> 0, |A|, < B, thenr(A) <r(|A|,) <r(B).
Here, r(A) is a spectral radius of A and can be explicitly computed as

1 . =
P(A) = Tim A" = T A5 @7.1)

Proof. We observe that

|A™|, QA" <9 B™. 4.7.2)

Since we want to use the information of the entries, we use the formula corresponding to the 2-norm

1A™ 1, < [[1A™ ][, < 1AL, < 1B™ ], (4.7.3)

Thus we have
r(A) < r(]A|T) <r(B). 4.7.4)
O

Remark 76. This lemma can be viewed as an analogue of the spectral radius bound given by the order
of positive definite matrices. That is, for Hermitian matrices A, B, if |A| < B, then we also have

r(A) < r(B). (4.7.5)

Lemma 25 (Row-sum bounds of spectral radii). A is a positive matrix, then we have

n n

1Ignji£n ; aji, (the smallest row-sum.) < r(A) < max ; a;ji, (the largest row-sum.). (4.7.6)

Note that r(A) = r(AT), we have further

n n

12&1&2 aji (the smallest column-sum.) < r(A) < max Z aji (the largest column-sum.). (4.7.7)
= —

7=1

Proof. Let & = minj<j<p y_p_; @ > 0.
If « =0, wetake B =0. If o > 0, we take B = (bj)1<jr<n = < L a). Then A > B holds

>i=1 aje
obviously (since o« > ", a;¢). By the previous lemma Lemma 24, we have r(B) < r(A).
Note that after this arrangement, we have

Bl = (Z bjk> = (a)lgjgn =al = «a € Sp(B). (4.7.8)
k=1 1<j<n
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Thus we have
a<rB)<r(4d) = 12113 ajr < r(A). 4.7.9)
>IN
k=1
correspondingly, for 5 := maxi<j<n > ., @ > 0. We take C' := (¢ji)1<jh<n = (% ) e
== = =194 ) 1< k<n
Then A > C holds obviously. By the previous lemma Lemma 24, we have r(C') < r(A).
z1
Let A be in the spectrum of C' such that [\| = r(C'). Let the eigenvector z = ( : ) € C” corre-
sponding to A, then we have o
chk:z:k = |\z;| = r(CO)|z;| < <1211?<Xn |xk]) chk = 1121?<Xn‘xk| - B. (4.7.10)
k=1 - k=1 ==
Thus
r(C) < B- maxllﬁkﬁ” 2 i< i< = o)< B @.7.11)
Ly
Thus we have
r(4) <r(C) < B = max ;ajk. (4.7.12)
[

It follows readily that we have the following proposition.

Proposition 64. Let A be a positive matrix, then we have
(1) If there exists a strictly positive vector v € C", a > 0, such that Az > (>) ax, thenr(A) > (>) o;

(2) If there exists a strictly positive vector v € C", a > 0, such that Ax = ax, then r(A) = «;

(3) Ifthere exists a strictly positive vector x € C", o« > 0, such that Az < (<) ax, thenr(A) < (<) «

Remark 77. By A positive, x positive, we have Ax > 0.

Remark 78. We only prove (1) and (3). (2) follows from (1) and (3).
x1
Proof. Since x = < : ) is strictly positive, we have X = diag(zy, - - - ,x,) is invertible. Thus we have
Ax > ax
> min azz; = a. (4.7.13)

Lemma 25 . 1
> min a;px; Tk
1<j<n J 1<j<n
OJ

r(A) =r(X TAX)

If Az > au holds strictly, then the second inequality is strict, thus we have r(A) > «. Likewise we have

Az < (<) ax implies r(A) < (<) «
With the above analysis, we are now at the position to give a structural characterization of positive

matrices, particularly, their largest eigenvalue and the corresponding eigenvector.
First, we will show that the largest eigenvalue must be the spectral radius of the positive matrix.
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Proposition 65. Let A be a positive matrix, then we have r(A) € Sp(A). Furthermore, there exists two
positive (non-negative) vectors x,y such that

Az =r(A)x, y AT =r(A)y". (4.7.14)

Furthermore, if A is strictly positive, then x,y can be chosen to be strictly positive and unique. In this
case, the geometric multiplicity of the eigenvalue r(A) is 1.

Proof. We begin with the case of strictly positive matrices. Let A\ € Sp(A) such that |\| = r(A) and
the corresponding eigenvector be v. Then we have

triangular inequality

r(A)|v| = | | = |Av| < Al L[v] = Alv]. (4.7.15)
Here |x| denotes taking the absolute value of the vector = entrywise. We denote
w = Alv| —r(A)|v] > 0. (4.7.16)

Case 1. If w = 0, then A|v| = |A||v|. Note that A is strictly positive, |[v| > 0, |v| # 0, we have
Alv| > 0 is strictly positive. Thus we take z = A|v| > 0, then we have

Az = A(AJv|) = [NA(Jv]) = r(A)x. (4.7.17)
Case 2. If w > 0, then Aw is also strictly positive, thus
0 < Aw = A(A|) — [N (A]v]) = Az — A= (4.7.18)

By Proposition 64, || is strictly upper-bounded by r(A) i.e. r(A) > |\|. But we know |A| = r(A), thus
we have r(A) > r(A), which is a contradiction.

Thus we have A|v| = r(A)|v| = .

For the uniqueness, let 2’ be a real vector such that Az’ = r(A)z’, then we can define

t, =min{t > 0tz —a’ >0} > 0. (4.7.19)

Then, t,x — 2’ > 0, and there is at least one entry is 0 in ¢t,x — z’. If all the entries are zero i.e.
t.x — 2’ = 0, then = and z’ are proportional. Otherwise, by the strict positivity of A again, we have
A(t.x — 2') is strictly positive, thus we have

0< Aty — ') = r(A)(tux — 2), (4.7.20)

which means that ¢,x — 2’ is strictly positive, which contradicts the fact that ¢, — 2/ > 0 and at least
one entry is zero. Thus we have the uniqueness. Note that we prove the uniqueness the eigenvector of
r(A) as a real vector and not only as a strictly positive vector. Thus we can conclude that the geometric
multiplicity of the eigenvalue r(A) is 1.

For the case that A is non-negative, we only need to consider A + €1, where 1 = (1)1<; x<,,. Then
by the previous case there exists 7. € S"~! such that (A + 1)z, = r.(A)z..

¢ First, we have

lim . (A) = lim lim_[[(A+£1)™ 3 = Tim lim [|(A+ e1)" |7 = r(4). 4.7.21)
€ m—0o0 E—

e—0 m—o0
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 Then, by the compactness of the unit sphere S"!, we can take a convergent subsequence and
then take the limit to conclude that there exists some non-negative vector x € S"~! such that
Ax =r(A)x.

]

We will show next that the algebraic multiplicity of the eigenvalue r(A) is also 1 for strictly posi-
tive matrix A, which rules out the possibility of the existence of nontrivial Jordan blocks (generalized
eigenspaces) corresponding to the eigenvalue r(A).

Proposition 66 (r(A) is a simple eigenvalue). Let A be a strictly positive matrix, then r(A) is a simple
eigenvalue of A .

Proof. We have shown that (A) is at least a semisimple eigenvalue of A in Proposition 65. If it is not
simple, then there exists w # 0 and w, x being linearly indepedent, such that

Aw =r(A)w + . (4.7.22)
Taking the complex conjugate on both sides, we have
Aw = r(A)w + . (4.7.23)

Thus W.L.O.G. we can assume that w is real. Moreover, since x is strictly positive, for ¢ sufficiently
large, we have wt + x > 0 and

Alwt + ) =r(A)(wt + ) + . (4.7.24)

Thus again, W.L.O.G. we can assume that w itself is already strictly positive. However, since z > 0, we

have
Proposition 64
e

Aw > r(A)w r(A) > r(A), (4.7.25)
which is a contraction. ]

Remark 79. The above proposition is structural, which means that
r(4)
A~ < B)' (4.7.26)

Next, we will show that there is an essential separation between the eigenvalue (A) and the rest of
the spectrum of A.

Proposition 67. Let A be a strictly positive matrix, X € Sp(A) and \ # r(A), then we have |\| < r(A).
Proof. Assume || = r(A), then

triangular inequality

r(A)|v] = | | = |Av| < Alvl. (4.7.27)

If Alv| > r(A)|v|, then by Proposition 64 we have r(A) > r(A), which is a contradiction. Thus we have
Alv| = r(A)|v] = |Av|. By the equality condition of the triangular inequality, we have v = ¢ |v| for
some € R which means that |v| is also an eigenvector of A corresponding to the eigenvalue A. However
we have shown that |v| is an eigenvector of A corresponding to the eigenvalue r(A), thus r(A) = A which
is a contradiction with the assumption that A # r(A).

]



4.7. QUANTUM PERRON-FROBENIUS THEOREM 115

T

Proposition 68. A is strictly positive, v,y > 0, Az = r(A)z, y' AT = r(A)y?, and we assume that x

and vy are normalized such that y*' « = 1, then we have

. AN\" T
nlgnoo (T(A)) =zxy . (4.7.28)
Proof. The proof is by direct calculation. W.L.O.G. r(A) = 1, then we have that 3 .S invertible such that

SAST = (1 B),and

: mqg—1 __ 1 r(B) <1 1
lim SA™S _( _—_— Bm) & ( 0). (4.7.29)

1
0
Letvy = | . |, then we have SAS~'v; = v;. By Proposition 65, S~'v; = ax for some a € C. Likewise

0
we have v] S = by’ for some b € C. On the other hand,

l=vlv=baS™7" y'z S =ba = lim A™ = (ab) 'S vl S = (ab)tay’ = xy”. (4.7.30)
N~ m—oQ
=1

]

Remark 80. This is a structural result which gives an explicit characterization of the limit behavior of
the strictly positive matrix A.

Next, we will extend the above results from the case of strictly positive matrices to the case of irre-
ducible matrices.

Definition 4.7.2 (Irreducible matrix). A matrix A € M,,(C) is called reducible if there exists a permuta-

tion matrix V' such that
B C
VAV = . 4731
(Ow—r)xr D) ( )

We say that A is irreducible if it is not reducible.

Proposition 69. If A is positive (non-negative), then A is irreducible if and only if (I + A)"~1 is strictly
positive (i.e. (I +A)™' > 0)

Proof. exercise 30. 0

Theorem 4.7.3 (Perron-Frobenius theorem for matrices). Let A be a positive (non-negative) irreducible
matrix, then we have the following properties:

(1) r(A) > 0;
(2) r(A) is a simple eigenvalue of A;

(3) There exists a unique (up to a positive scalar) strictly positive eigenvector x such that Az = r(A)z,
which is called the right Perron vector of A;

(4) There exists a unique (up to a positive scalar) strictly positive left eigenvector y such that y* A =
r(A)yT, which is called the left Perron vector of A.
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Proof. Using the characterization of irreducible matrices Proposition 69, we can apply the previous re-
sults on strictly positive matrices to obtain the result. [

Next, we will consider the P-F theorem for the case of positive and strictly positive maps. We will
first give the definition of strictly positive maps.

Definition 4.7.4. Let ¢ : M,,(C) — M, (C) be a linear map. If for any A € M,,(C), A > 0and A # 0,
we have ®(A) > 0, then we say that ¥ is a strictly positive map, denoted as ® > 0.

Definition 4.7.5. Let & : M, (C) — M, (C) be a positive map. Let P € M, (C) be an orthogonal
projection, we say P reduces ® if PM,,(C)P is an “invariant subalgebra” with respect to ®, i.e.

®(PM,(C)P) C PM,(C)P. (4.7.32)

If there does not exist any nontrivial orthogonal projection P € M, (C) that reduces ®, then we say that
D is irreducible.

We have the following simple characterizations of reduction of positive maps.
Proposition 70. P reduces ® iff (1) ®(P) < aP for some a > 0 iff (2) I — P reduces ®*.
Proof. (1) “ = " is trivial. “ <= ", if ®(P) < aP, then

positive maps preserve the order

O(PXP) < | X||®(P) <al|X||P e PM,(C)P. (4.7.33)
(2) “ = ” follows by direct calculations:
Tr(®*(I — P)P) =Tr(({ — P)®(P)({ — P)) <aTr((I — P)P)=0= P®*(I — P)P =0 (4.7.34)

= ¢*(I — P)2P =0 = ®*(I — P)P = 0 = ®*(I — P) annihilates PC". (4.7.35)

Therefore, Range[®*(I — P)] C (I — P)C™, thus there must exist some b > 0 such that ®*(/ — P) <
b(I — P), which means that [ — P reduces ®*.
“ <" is symmetric to the above argument. [

To discuss the P-F theorem for positive maps, we first define the concept of the spectrum of a linear
map on matrix algebras. Then, we will give a non-trivial and abstract definition of the irreducibility of
positive maps.

Definition 4.7.6. Let ® : M, (C) — M, (C) be a linear map. If there exists ¥ : M, (C) — M, (C) such
that ® oV = W o & = I, (), then we say that @ is invertible and denote the inverse as V = o1
We define the spectrum of ® as

Sp(®) := {a € C: aid — D is not invertible} . (4.7.36)
We also define the spectral radius of ® as
r(®) := max{|a| : a € Sp(P)}. (4.7.37)

Interestingly, we have a very similar characterization of the irreducibility of positive maps as the
irreducibility of positive matrices.
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Proposition 71. Suppose ® : M, (C) — M, (C) is a positive map, then O is irreducible if and only if
(id+ ®)"~ ! > 0.

Proof. Suppose that @ is irreducible and 0 # A > 0. Let B = A + ®(A). We will show that

Prange((ia+®)n-1(4)) = 1.
We first note that ker B C ker A. This is because if Bv = 0, then we have

v Av + v B(A)v = 0. (4.7.38)

However, ®(A) > 0 and A > 0, thus we have v*Av = 0 and v*®(A)v = 0. Thus we have Azp =0
and @(A)%v = 0, which means that v € ker A. Since A and B are Hermitian, we have RangeA =
ker(A*)* = ker A C ker B+ = Range(B*) = RangeB. Therefore, Prange(4) < Prange(B)-

Casel. If PRange(B) = PRange(A)a then PRange(@(A)) < PRange(B) = PRange(A)- Hence Range(@(A)) C
Range(A) i.e. Prange(4) reduces ®. The irreducibility of ® implies that Prange(a) =  Which is equivalent
to A being invertible. Thus ker B = ker A = 0, which means that B = (id + ®)(A) > 0. Now we have
proved that 0 # X >0 = (id + ®)(X) > 0, thus we have (id + ®)"(X) > Oi.e. (id + ®)"' > 0.

Case 2. If Prunge(B) > Prange(a) 1.€. Range(A) C Range(id + ®)(A). If Range(id + ®)*1(A) =
Range(id + ®)*(A) forsome K —1 = 1,--- ,n — 1, then it reduces to Case 1. If Range(id + ®)*~1(A) C
Range(id + ®)*(A) forany k = 1,--- ,n — 1, we have that Prange((ia+®)»-1(4)) = I by counting the rank
of the projections. This means that (id + ®)"~'(A) is invertible i.e. (id + ®)""'(A) > 0, which means
that (id + A)"~! > 0. O

Remark 81. For the matrix version, we use some techniques from the graph theory to prove this char-
acterization as we do in exercise 30. For this version, it is more straightforward to use the abstract
properties of positive maps. However, the graph theory approach may provide us more information in the
positive matrix case.

With this property at hand, we can now give the P-F theorem for positive maps.

Theorem 4.7.7 (Perron-Frobenius theorem for positive maps). Suppose ®: M, (C) — M, (C) is an
irreducible positive map. Then r(®) € Sp(®) and there exists a unique positive definite matrix A €
M, (C) up to scalar such that (A) = r(P)A. Moreover, r(P) is an algebraically simple eigenvalue of
P.

Proof. We define the resolvent operator on Sp(®)° T Cas
() = (zid — @) (4.7.39)

Then ¢ is a holomorphic function on Sp(®)¢ with Taylor-series expansion

e (I)k—l
o) =) — (4.7.40)
k=1

This series converges absolutely on {|z| > r(®)}.
We claim that r(®) is a singularity. Otherwise, ¢(r(®)) exists and thus lim,_,, @) Tr(B¢(2)(A))
exists for A, B > 0. Hence

Tr(Bé(2)(A))] < Te(Bo(|2[)(A)),  V|z| > r(®). (4.7.41)
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By the Banach-Steinhaus theorem, we have ¢(z) exists for |z| = r(®). This implies that ¢ is analytic
on {|z| > r(®)} which is a contradiction to the fact that r(P) is the spectral radius. Thus r(®P) is a
singularity of ¢(z) and consequently r(®) € Sp(P).

By taking the Laurent series expansion of ¢(z) at r(®), we have

N 1 6(2)
é(z) = kz;é(z —7(®))" 0y, where & = ) Wdz. (4.7.42)

Here, I" is chosen to be a smooth curve in the neighborhood of 7(®) which encloses 7(®). Note that

d = lim (z—7r(@)p(z) = lim (a—7r(®)) ¢(a) (4.7.43)
z—r(P) RBQ_W((I)H_\T/:E/

is a positive linear map.
For any k, 7 > —/, by direct computations, we have

7{“,@ ]{ (2 — 7 (® ’“*2?2(;2—) (@) cdzidzy
)

resolvent formula (Z 1) — ( )
= —dz;dz
MﬁﬁfTQ—@sz@> Hzp — (@)t 7 (4.7.44)

D14k, k,J 20,
=00, k<0,j>0 orj<0k>0
q)j+1+ka kv] < 0.

Here, W.L.O.G. we assume that I, is contained in I';. This implies that
- D _pi .
D(2)P_p = D_y0(2 g_:e@ @iz — (D)) ;::1 o (z—r(®)"10_,, (4.7.45)
which is because ®_, = 0 for any ¢’ > ¢ since we note that r(®) is an r-order pole. This means that
(z=1(P)P_yp(2) =Dy = (2 —r(D))P(2)P_y. (4.7.46)
By eq. (4.7.40) and comparing the coefficient of z~2 on both sides, we have

D —1r(®)b_y =0=Db_, — r(®)D_,. (4.7.47)

Therefore,
PPy =D 1D =7r(D)D_y. (4.7.48)

For any A > 0, we have that
O(D_y(A)) =r(P)P_,(A) where P_,(A) > 0 by the previous observation eq. (4.7.43).  (4.7.49)

If @ is irreducible, then by Proposition 71, we have (id + ®)"1(®_,(A)) = (r(®) + 1)"'®_,(A) > 0
ie. ®_y(A) > 0if d_,(A) # 0. However, when £ > 2, &, = &_,d_, = &_5,,; = 0 by eq. (4.7.44),
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which leads to a contradiction. Thus we can only have / = 1 and ®*, = ®_; ;. ; = ®_;. From this we
can also see that ®_;(A) > 0 is a “Perron vector” since

B(D_, (A)) = r(0)D_, (A). (4.7.50)

Now we are at the position to prove the uniqueness of “Perron vector”. Similar to the case of positive
matrices, we will actually show the uniqueness in the regime of any matrices and do not restrict to the
regime of only positive definite matrices. We suppose A € H.%, A" € H,, (A’ is not a multiple of A),
such that ®(A) = r(P)A and (A’) = r(P)A’. Then we let t, = min{t : tA+ A’ > 0}. Since A’ is not
a multiple of A, we have t,A + A’ # 0, thus by the irreducibility of ® we have

0 < (id+®)" (L, A+ A) = (r(®) + 1) ' (tA+ A) = t, A+ A" > 0. 4.7.51)

which is a contraction to the minimality of ¢,. Thus we have the uniqueness. Suppose B € M, (C) is a
general matrix (not required to be Hermitian) such that &(B) = r(¢) B, then by considering B + B* and
B — B* we know that B is also a multiple of A, which proves that the geometric multiplicity is 1.

We already know that (®) is semisimple. Suppose that r(P) is not an algebraically simple eigen-
value, then there exists a matrix B such that ®(B) = r(®)B + A and A, B are linearly indepedent. Note

that A is a multiple of the Perron vector ®_;(A), thus ®_;(A) = A. Therefore,
O_,(®(B)) = r(®)®_1(B) + D_,(A) = r(®)d_,(B) + A. (4.7.52)

On the other hand,
®_1(B(B)) = 01 (r(®)B) = r(®)d_1(B), (4.7.53)

thus A = 0, which is a contradiction. We see that r(®) is an algebraically simple eigenvalue of ®. This
completes the proof. O

Proposition 72. Let ¢ : M, (C) — M, (C) be an irreducible positive map, then
(1) If A > 0 such that ®(A) > A for some o > 0, then o < r(P);
(2) If A > 0 such that ®(A) < aA for some o > 0, then o > r(P);
(3) If A > 0 such that ®(A) = aA for some o > 0, then o = r(P).

Proof. Note that ®_; is a positive map, thus

D (D(A) > ad_1(A) = r(®)D_1(A) > ad_(A). (4.7.54)

Since ®_;(A) is positive definite, we have r(P) > «. O

4.8 von Neumann inequality

Theorem 4.8.1 (Dilation theorem). Let A € M, (C), ||A|| < 1, then 3 a Hilbert space H and a unitary
operator U on C" @ H such that for any m € N, we have

A™ = PU™P, where P:C" @& H — C" is the orthogonal projection. (4.8.1)
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Remark 82. This is a totally structural result, which means that any operator can be put into a “corner”
of a very large unitary operator, and the polynomial operation on the operator can be preserved.

Remark 83. If an operator V' is isometric satisfying

Vv=I 1-VV*=P, (4.8.2)
then
vV P
U= (0 V*) (4.8.3)

is a unitary operator, which can be verified by straightforward calculations

L (V vV P\ (I 0
o (% ) E) () a5

m_ (VT %
U _( 0 v*m)' (4.8.5)

Moreover, we have

Proof. Let

Ho = (PC" = {(Uj)Pl ) llosll* <o, v € C"} = *(N;C"). (4.8.6)
j=1

Jz1

We define V' : Hg — Hj as
V(vj)jz1 = (Avi, V1 — A*Avy, vg, 03, ). (4.8.7)

Then we have

1V (e3)sei? = 1 Awn 2 + [VT= 2|+ 3 oyl
j=2

= (A" Avy, o) + (1 = A" A)vy,v1) + Z v;I*

=2 (4.8.8)
= lloal® + ) lloyl1?
j=2
= [|(v;)jz1l*.
Therefore, we have V' is an isometry, i.e. V*V = I;;,. Moreover, by the action of VV we have
V™ (0))j51 = (AMvg, -+, (4.8.9)
We define
A™ .
vV I-VV* ~~ N "
U= e = | Mc© € My(C) ® B(Hoy) = B(C" @ H) forsome H  (4.8.10)
* k

which is a unitary operator, then we have

m vm * mp A™ 0\ withabit abuse of notations 4,
U _( v*m) — PU™P = ( ; 0) i A, (4.8.11)

]
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Theorem 4.8.2 (von Neumann inequality). Let A € M, (C),
we have

Al| <1, then for any polynomial p € C|z],

Ip(A)]] < max [p(z)]. (4.8.12)

|z[<1

Proof. By the dilation theorem, we have 3 a Hilbert space H and a unitary operator U : C"@H — C"@®H
such that for any m € N, we have

A™ = PU™P, where P:C" ®H — C" is the orthogonal projection. (4.8.13)
Then we have
by the maximum theorem for hol. functions
Ip(A)|| = I1Pp(U)P|| < [lp(U)]| = sup [f(N)] < sup |[f(N)] = max [p(z)].
AeSp(U) Aest |z|<1
(4.8.14)

]

We will see next that this theorem can be generalized into a more generalized form, which is stated
for positive maps. We will first give a highly non-trivial characterization of the positive map acting on
some commutative x-algebra.

Lemma 26. Let f(2) = Y™ a;2 is strictly positive on S, then there exists a polynomial p € Clz]
such that f = |p|*.

Proof. Since f is real-valued on S', we see that a; = a_; for any j and ay € R. W.L.O.G. we assume
that a,, # 0 then a_,,, # 0. We denote

g(z) = 2" f(2) (4.8.15)
then ¢(z) is a polynomial and can be extended to the whole complex plane C. Moreover, it satisfies
g(2)z72™ = g(1/2). (4.8.16)
Therefore, with respect to the distribution of the zeros of g, we claim that, if o, - - - , ,, are the zeros of
g,then 1/a7, -+ ,1/a,, are also the zeros of g. Let
g(2)=(z—a) - (z—an), g =(E-1/ar) - (z—1/ay,). (4.8.17)
Then we have
9(2) = amg1(2)g2(2). (4.8.18)

Moreover, by direct calulations, we have

m_(=D"

g2(2) = (EF— 1) (Z—1/om) =2 Q- O

g1(1/7). (4.8.19)

For any z € S!, since f(z) > 0 and |z~™| = 1, we have

(=D

9(2)] = lamllg1(2)[[Z™]]

~
~~
I\
S~—
I
=
—~
0
=
|
NI
3
)
—
N
=
I

191(1/2)]

m

N (4.8.20)
= — @/

’1"m‘
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Note that z € S', thus we have Zz = |z|* = 1 and then 1/Z = z,

f(z) = L0 (4.821)

|041--‘Oém|

Letp(2) = 4/ %gl(z), then we have p(z) is a polynomial and f(z) = |p(z)|* forany z € S'. [

Theorem 4.8.3. A € M, (C),
on polynomials

Al € 1. Let @ : C(S') — M, (C) is a linear map defined by its action

O(fi + f2) = f1(A) + f2(A)". (4.8.22)
Here, f1, fo € P(S') are polynomials on S*. Then ® must be a positive map and | ®|| < ||®(1)]] < 1.

Proof. By Stone-Weierstrass theorem, ® is defined on the dense subset P(S') + P(S') of C(S'), where
PESY :={p:pePES"} (4.8.23)

Specifically, we define
Dy : P(SY) + P(SY) = M,o(C), Po(f +9) = f(A)+ g(A)". (4.8.24)

We take f > 0, f € P(S') + P(S!) and consider f + 1 > 0 for ¢ > 0 small. Then we have
f+el € P(SY)+P(Sh). If we can show that ®o(f +c1) > 0, then we have ®o(f) > 0 by the continuity
(f.d. and linear) of ®,. Thus W.L.O.G. we assume that f is already strictly positive, and we want to show
®o(f) > 0. By the previous Lemma 26 characterizing strictly positive elements in P(S*) + P(S!), we
have f = |p|* for some p(z) = > oiga;2’ € C[z]. Then we have

2) = a;apz’ %, zeSh (4.8.25)
J
7=0 k=0
Thus we have
m m Aj, ] > 0,
®o(f) =YD ajarA;k, where A;i={AD <o, (4.8.26)
7=0 k=0 I, j=0.

We claim that ®q( f) is positive semidefinite. To see this, we calculate

I A ... A
VR : agv gV
(Do(f)v,v) :< S '* S I > (4.8.27)
: - A v a
Am oo AT
I A" A
By exercise 15, the matrix e is positive semidefinite, thus we have (®y(f)v,v) > 0 for
P

any v € C". Therefore, we have ®y(f) > 0. Thus @ is a positive map on P(S!) +7P(S!). By the density
of P(S') + P(S'), we can uniquely and continuously extend ® to a positive map ® on C'(S!), whose
positivity is preserved under continuity.

Next we will show that ||®|| < 1. This follows readily by the generalized Proposition 73 below. [
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Proposition 73. (2 is a compact Hausdor{f space and C(X) is the Banach space of continuous functions
on Q endowed with the sup-norm. Let ® : C(Q2) — M, (C) be a positive map. Then we have ||| =
[P (1)].

Proof. Let (1) < I (W.L.O.G.). Then for any f € C(£2) with || f|| < 1.
For any € > 0, there exist 21, - - - , Z,, € € and a finite open covering {U;}72, of €2 such that

\f(x) — f(z;)| <e, VeelU;, j=1,---,m (4.8.28)

using the compactness of 2. We take {g;} the unital decomposition of 1 w.r.t. {U;}, i.e. suppg; C U,
g; >0and 77", g; = 1. Welet g(z) = 377", f(;)g,(x). Then we have || f — g|| < . Thus we have
12(f) — (Il < [I@[[llf — gl < ell@].

On the other hand, we have

m

@)l = [ > flz)2(g;)

j=1
®(g1)2 ®(gm)7\ [ f(z1) ®(g1)? 0
= : : : U (4.8.29)
0 0 f(@m) ) \®(gm)2 0
pel
<[>0 = o) < 1.
j=1
Thus we have
[2(HI < 1@(g)ll +el[@] < [[@(1)] + <l[®]- (4.8.30)
Taking ¢ — 0, we have ||O(f)|| < ||®(1)]| for any f € C(Q) with || f|| < 1. Thus we have ||| <
|®(1)|| < ||®] and thus ||®|| = ||P(1)]|. In particular, we have ||| < 1. O

Corollary 22 (von Neumann inequality).

Proof. ppolynomial, we take ®(p) := p(A), then (1) = I. By the above proposition, we have ||| = 1.
Thus

Ip(A) = ([ < llpll = sup p(2)]- (4.8.31)
O

Theorem 4.8.4 (The norm of positive maps). If ¢ : M,,(C) — M, (C) is a positive map, then |®|| =
1S

Proof. Let ||A]| < 1, ¥ be the map defined on C'(S'). By Theorem 4.8.3, we have that ¥ is a positive
map and thus

J@(A)] = [@(¥(:)]| < [@9] 2] < @] = [@W(1)] = [|2(D)] (4.8.32)

Thus we have
|2 < [[e(D)]| < [|@f] = [|®]| = [[®(])]]- (4.8.33)

]
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4.9 Exercise IV

Exercise 28. Prove Theorem 4.3.2.

Proof. Step 1. We claim that for any x-subalgebra 2, and any B € ", v € C", there exists A € 2
such that Bv = Awv.
If this has already been established, we apply this to the x-subalgebra

A

A
M = _ —A®I,: AeAy C M,2(C), 4.9.1)

A

U1

then for any B € 9", JA € A such that Bv = (A ® I,,)v for v = : ) € C* where {vy,--- ,v,}isa

Un

X
basis of C". Now we compute the structure of 9" = { ( ) =X®I,: XeA }, thus we have
X

X . B
gm":{( ):X@In:XGQ("}. WL.O.G. we let B = (
X

then we have

_ ) =B®I, for BeA",
B

Bu = (A® I,)v= By, = Av;, fori=1,--- n. (4.9.2)

Thus the actions of B and A coincide on the basis thus B = A. We have proved that 21" C 2. But
20 C A" holds trivially, thus we have 21" = L.

Step 2. It suffices to prove the claim above. We fix any vectorv € C",letV = {Av: A € A} =Av
the subspace of C" and consider Py, the orthogonal projection onto the subspace of V.

We claim that P, € 2. That is because V' is 2-invariant, thus we have Py APy, = AP, for any
A € 2. By taking adjoint we have P, A* Py, = Py A* for any A € 2(. By 2 is a x-subalgebra, we have
PvAPV = PvA for any A e . TOgCthCI‘ with PvAPV = PvA we have APV = PvAPV = PvA for
any A € 2. Thus we have Py, € .

Therefore, VB € A", BPy = PyB = V is 2"-invariant. In particular, \Bi_/ U € V (by

€A €V since 2 is unital

V is ”-invariant). That is, 3A € 2 such that Bv = Av by the definition of V. O

Exercise 29 (The closedness of inverse on *-subalgebras). Let 2 be a unital x-subalgebra of M,,(C). Let
A € U be a matrix that is invertible in M, (C). We will show that A~' € A i.e. Aly is invertible in 2.

(1) If A € A is a Hermitian matrix with spectral decomposition A = Z;n:l AP for \; € R, \; #
Ni (j # 1). Then each P; belongs to 2. Moreover, for general A € A (no need to be Hermitian),

each A € 2 can be written as a linear combination of at most 4 unitaries with each of them belongs
to .

(2) Let B € H° N2 be a positive definite matrix in 2, then B~ € 2.

(3) Prove the main result.

Proof. (1) Note that

1
r= I T (Al — A). (4.9.3)

ZE{I,,R}\{]} ’ J
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Thus we have P; € 2 since 2/ is a subalgebra. If A is contractive, then \; € [—1, 1] and we can
write \; = cos 6; for some 0; € [0, 7|. Then we have

m

A:Zeose-P:iMP:1 Z (e P)) i e % P)) (4.9.4)
i P; 5 i =5 . 9.

7=1 j=1 j=1 j=1
TV - N TV -

unitary unitary

Therefore, each Hermitian matrix can be written as a linear combination of 2 unitary matrices

1
U, + U 4.9.5

according to eq. (4.9.4) where Uy, U, € 2 are unitaries. For general A € 2, we write

1 1
A= (A4 A+ [i(A— AY)]. (4.9.6)
2 —r 2] ———
self-adjoint self-adjoint

It follows readily that each A € 2 can be written as a linear combination of at most 4 unitaries that
come from 2.

2 ||I- ||B||7lB|| < 1, thus we have

71 > . n any f.d. subalgebra is closed _1 _1
(1B § (I ||B|"'B) € IB|B'e%=DB"'ed (497
_,_/
=0
e

(3) Forany e > 0, A € 2, we have (A*A)z € Aand A(A*A+<cI)"2 € . Thatis, if A = U|A|is the
polar decomposition of A, then both U and |A| belong to 2.

Let A € M,(C) be a invertible matrix with polar decomposition A = U|A|. Then we have
— |A|7'U*. Since A € 2, we have U, |A] € 2. By (2), we have [A]™' € 2. By Aisa

k- subalgebra we have U* € 2. Thus we have A~! = |A|7'U* € .
U

Exercise 30. If A is positive (non-negative), then A is irreducible if and only if (I + A)"! is strictly
positive (i.e. (I +A)"' > 0)

(Hint: Consider A =T+ A then (Ap)]k # 0 if and only if there exists a path connecting v; to vy, in
the directed graph I' = (vy, -+, vp; A) where v; is the j-th vertex of I' and Ajk > () means there is a
directed edge from v; to vy. Consider QQ = {v € I' : A a path from v to vy, }. Then show that there is no
path between §) and €)°.)
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