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This is a note on the matrix analysis course given by Prof. Jinsong Wu (BIMSA) in Spring 2025.
It will be focused on some important matrix inequalities and their applications in quantum information
theory.
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Chapter 1

Eigenvalue Inequalities

1.1 The min-max inequality
Theorem 1.1.1. A ∈ Mn(C) is a Hermitian matrix, we denote λk(A) as the k-th largest eigenvalue of
A, then we have

λk(A) = max
dimV=k

min
∥x∥=1,x∈V

⟨Ax, x⟩ = min
dimV=n−k+1

max
∥x∥=1,x∈V

⟨Ax, x⟩. (1.1.1)

Lemma 1. Let V be a subspace of Cn with dimV = k, then ∃v ∈ V ∩ S(V ) s.t. ⟨Av, v⟩ ≤ λk.

Proof. Let vi be the unit eigenvalue of λi(A). We take W = Span(vk, · · · , vn) then dimW = n− k+1.
Note

dim(V ∩W ) = dim(V ) + dim(W )− dim(V +W ) ≥ dim(V ) + dim(W )− n = 1, (1.1.2)

then we have V ∩W ̸= ∅ ⇒ ∃v ∈ V ∩W with ∥v∥ = 1. Since v ∈ W , we have v =
∑n

j=k ajvj with∑n
j=k |aj|

2 = ∥v∥2 = 1⇒

⟨Av, v⟩ =

〈
n∑
j=k

ajλjvj,
n∑
j=k

ajvj

〉
=

n∑
j=k

λj|aj|2 ≤ λk

n∑
j=k

|aj|2 = λk. (1.1.3)

Remark 1. This inequality is also called Poincaré inequality.

Proof of Theorem 1.1.1. We take any subspace V with dimension k of Cn, by Poincaré’s inequality, we
have

min
x∈V ∩S(V )

⟨Ax, x⟩ ≤ λk. (1.1.4)

By the arbitrariness of V we have

max
dimV=k

min
x∈V ∩S(V )

⟨Ax, x⟩ ≤ λk. (1.1.5)

Remark 2. • λ2(A) = mincodim=1maxx∈S(V )∩V ⟨Ax, x⟩;
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6 CHAPTER 1. EIGENVALUE INEQUALITIES

• λk(A+B) ≤ λk(A) + λ1(B);

• |λk(A+B)− λk(A)| ≤ ∥B∥.

Theorem 1.1.2 (Poincaré separation theorem or Cauchy interlace theorem). AHermitian, P a orthogonal
projection in Mn(C) s.t. PAP = B. Denote rankP = m, and the eigenvalues

A : λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A); (1.1.6)

B : µ1(B) ≥ µ2(B) ≥ · · · ≥ µn(B). (1.1.7)

Then for all k ≤ m, we have
λn−m+k(A) ≤ µk(B) ≤ λk(A). (1.1.8)

Proof. By the min-max theorem applied first on RanP and then on Cn, we have

µk(B) = min
dimV=m−k+1,V⊂RanP

max
x∈V ∩S(V )

⟨PAPx, x⟩ = min
dimV=m−k+1,V⊂RanP

max
x∈V ∩S(V )

⟨Ax, x⟩

≥ min
dimV=m−k+1

max
x∈V ∩S(V )

⟨Ax, x⟩ = λn−m+k.
(1.1.9)

On the other hand,

µk(B) = max
dimV=k,V⊂RanP

min
x∈V ∩S(V )

⟨PAPx, x⟩ = max
dimV=k,V⊂RanP

min
x∈V ∩S(V )

⟨Ax, x⟩

≤ max
dimV=k

min
x∈V ∩S

⟨Ax, x⟩ = λk.
(1.1.10)

1.2 Reading: An application of the min-max inequality—Cheeger
inequality

Theorem 1.2.1 (An application: Cheeger inequality). G = (V,E) is a d-regular graph, n = |V |. Let A
be the adjacent matrix of G.

Consider M = 1
d
A is a Hermitian matrix, then we observe

M1 = 1, 1 := (1, · · · , 1)T . (1.2.1)

And 1 is the largest spectrum of M . What about 1− λ2?
Cheeger:

h(G)2/2 ≤ 1− λ2 ≤ Φ(G) ≤ 2h(G). (1.2.2)

Here,
∂S := {(x, y) ∈ E(G) : x ∈ S, y ∈ V \S}, (1.2.3)

h(G) := min

{
|∂S|
d|S|

: S ⊂ V, 0 < |S| ≤ |V |/2
}

(1.2.4)

Φ(G) := min

{
|∂S|

d|S| · |V \S|
|V |

: ∅ ⊊ S ⊊ V

}
. (1.2.5)
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Proof. Some important observations:

• In fact
1

2
min{|S|, |V \S|} ≤ |S||V \S|

|V |
=

|S||V \S|
|S|+ |V \S|

≤ min{|S|, |V \S|}. (1.2.6)

i.e. h(G) ≤ Φ(G) ≤ 2h(G). Therefore the two different “sparsities” of graphs are equivalent in
some sense.

• λ2 = maxx∈S1∩{1}⊥,x∈Rn⟨Mx, x⟩

• G is d-regular ⇒
∑n

j=1Mjk =
∑n

k=1Mjk = 1.

• For 1− λ2, we have

1− λ2 = min
x⊥1,∥x∥=1

(⟨x, x⟩ − ⟨Mx, x⟩)

= min
x⊥1,∥x∥=1

(
n∑
j=1

x2j −
m∑

j,k=1

Mjkxjxk

)

= min
x⊥1,∥x∥=1

1

2

n∑
j,k=1

Mjk(xj − xk)
2 (by the row-sum and col-sum are 1)

= min
x̸=1

1

2
·
∑n

j,k=1Mjk(xj − xk)
2∑n

j,k=1(xj −
1
n
xk)2

(by the description x ⊥ 1 ⇐⇒ x = x̃− 1

n
⟨x̃,1⟩1)

= min
x̸=1

1

2
·
n
∑n

j,k=1Mjk(xj − xk)
2

n
∑n

j=1 x
2
j −

(∑n
j=1 xj

)2 .
(1.2.7)

• On the other hand,

Φ(G) = min
S

|∂S|
d|S| |V \S|

|V |

= min
x∈{0,1}n,x ̸=0,1

1
2

∑n
j,k=1 dMjk(xj − xk)

2

d
n

(∑n
j=1 xj

)(
n−

∑n
j=1 xj

)
= min

x∈{0,1}n,x ̸=0,1

1

2
·
n
∑n

j,k=1Mjk(xj − xk)
2

n
∑n

j=1 x
2
j −

(∑n
j=1 xj

)2 .
(1.2.8)

Therefore
1− λ2 ≤ Φ(G). (1.2.9)

• Now we turn to address another side. Let v ∈ Rn, v ̸= 0 s.t. Mv = λ2v. By Perron-Frobenius
theorem, the components of v cannot be all positive. Thus, we can define

y ̸= 0,

{
yj = vj, vj ≥ 0,

yj = 0, vj < 0.
(1.2.10)
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Then we have

⟨Mv,y⟩ = λ2⟨v,y⟩ = λ2(⟨y,y⟩+ ⟨v − y,y⟩
=0

) = λ2⟨y,y⟩, (1.2.11)

and

1− λ2 =
⟨y,y⟩
⟨y,y⟩

− ⟨Mv,y⟩
⟨y,y⟩

=
⟨y,y⟩ − ⟨My,y⟩

⟨y,y⟩
+

⟨M(y − v),y⟩
⟨y,y⟩

≥0

≥ ⟨y,y⟩ − ⟨My,y⟩
⟨y,y⟩

=
1
2

∑n
j,k=1Mjk(yj − yk)

2

⟨y,y⟩
.

(1.2.12)
By the Cauchy-Schwarz Inequality, we have that

1− λ2 ≥

(∑n
j,k=1Mjk|y2j − y2k|

)2
2∥y∥2(

∑n
j,k=1(yj + yk)2)

≥

(∑n
j,k=1Mjk|y2j − y2k|

)2
4∥y∥2(

∑n
j,k=1(y

2
j + y2k))

≥

(∑n
j,k=1Mjk|y2j − y2k|

)2
8∥y∥4

.

(1.2.13)
W.L.O.G. let y1 ≥ · · · ≥ yn, we take t = max{k : yk > 0}. Then we have

1− λ2 ≥

(
2
∑t

j=1

∑n
k=j+1Mjk(y

2
j − y2k)

)2
8∥y∥4

=

(∑t
j=1

∑n
k=j+1

∑k−1
ℓ=j Mjk(y

2
ℓ − y2ℓ+1)

)2
2∥y∥4

=

(∑t
ℓ=1

(∑ℓ
j=1

∑n
k=ℓ+1Mjk

)
(y2ℓ − y2ℓ+1)

)2
2∥y∥4

(j ≤ ℓ < k)

=

(∑t
ℓ=1

|∂Sℓ|
d

(y2ℓ − y2ℓ+1)
)2

2∥y∥4

≥
(∑t

ℓ=1 h(G)ℓ(y
2
ℓ − y2ℓ+1)

)2
2∥y∥4

=
h(G)2

(∑t
ℓ=1 y

2
ℓ

)2
2∥y∥4

=
1

2
h(G)2.

(1.2.14)

1.3 Singular value inequalities

Theorem 1.3.1. A ∈Mn(C), |λj(A)| = limm→∞ λj(|A|m)1/m

Remark 3. Notations: A ∈ Mn(C), recall the polar decomposition A = U |A| = Ũ(V ∗DV ). Here V
diagonalizes the matrix A∗A.
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Proof of Theorem 1.3.1. By Jordan decomposition A = TJT−1, T nonsingular, J Jordan. In fact,

λj(|A|m)2 = λj(A
∗mAm) = λj(T

−∗Jm∗T ∗TJmT−1)

= max
dimV=j

min
∥x∥=1,x∈V

⟨T−∗J∗mT ∗TJmT−1x, x⟩

≤ ∥T∥2 max
dimV=j

min
∥x∥=1,x∈V

⟨T−∗J∗mJmT−1x, x⟩

= ∥T∥2λj(T−∗J∗mJmT−1) = ∥T∥2λj(JmT−1T−∗J∗m) (λj(A
∗A) = λj(AA

∗))

≤ ∥T∥2
∥∥T−1

∥∥2λj(Jm(Jm)∗) ⇒ λj(|A|m) ≤ ∥T∥
∥∥T−1

∥∥(λj(JmJ∗m))1/2

(1.3.1)

Since we have

JmJ∗m = diag(Jmn1
(µ1)J

∗m
n1

(µ1), · · · , Jmnk
(µk)J

∗m
nk

(µk)), W.L.O.G. |µ1| ≥ · · · ≥ |µk|, (1.3.2)

and
lim
m→∞

(JmJ∗m)1/2m = diag(|µ1|In1 , · · · , |µk|Ink
), (1.3.3)

we have
lim sup
m→∞

λnj
(|Am|)1/m ≤ |µj|, i.e. lim sup

m→∞
λj(|A|m)1/m ≤ |λj(A)| (1.3.4)

For the same reason, limn→∞ λj(|Am|)1/m = |λj(A)|.

Proposition 1. Hermitian dilation

A 7→ B :=

(
0 A
A∗ 0

)
=

(
U 0
0 I

)(
|A|

|A|

)(
U 0
0 I

)∗

. (1.3.5)

It is easy to see that
λj(B) = λj(|A|) for 1 ≤ j ≤ n, (1.3.6)

λj(B) = −λn−j+1(|A|), for n+ 1 ≤ j ≤ 2n. (1.3.7)

Theorem 1.3.2. For any matrices A,B, we have

|λj(|A|)− λ(|B|)| =
∣∣∣∣λj( 0 A

A∗ 0

)
− λj

(
0 B
B∗ 0

)∣∣∣∣ ≤ ∥∥∥∥( 0 A−B
(A−B)∗ 0

)∥∥∥∥ = ∥A−B∥. (1.3.8)

i.e.
max
1≤j≤n

|σj(A)− σj(B)| ≤ ∥A−B∥. (1.3.9)

Proposition 2 (Schur-Horn Inequality). A Hermite, we introduce the notations:

• λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A),

• ai1i1 ≥ · · · ≥ ainin are the diagonal elements of A ordered non-increasingly.

Then we have {λj} majorize {aijij}
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Proof. We define B =
(
aijij

)
1≤j≤k = PAP ∗. By Cauchy interlace theorem, we have

λn−k+j(A) ≤ λj(B) ≤ λj(A) 1 ≤ j ≤ k. (1.3.10)

We take summation on both sides, yielding

λn−k+1(A) + · · ·+ λn(A) ≤ TrB ≤ λ1(A) + · · ·+ λk(A). (1.3.11)

Theorem 1.3.3 (von Neumann’s trace theorem). A,B are Hermitian matrices, then we have

Tr(AB) ≤
n∑
j=1

λj(A)λj(B), (1.3.12)

Tr(AB) ≥
n∑
j=1

λj(A)λn−j+1(B). (1.3.13)

Proof. By A = U∗DU , we let A = diag(λi(A)) ordered non-decreasingly, then

TrAB =
n∑
j=1

λj(A)bjj. (1.3.14)

By Proposition 2, we have
k∑
j=1

bjj ≤
k∑
j=1

λj(B), ∀1 ≤ k ≤ n, (1.3.15)

k∑
j=1

bjj ≥
k∑
j=1

λn−k+j(B), ∀1 ≤ k ≤ n. (1.3.16)

Therefore, by the Abel formula, we have

TrAB =
n−1∑
j=1

(λj(A)− λj+1(A))

j∑
k=1

bkk + λn(A)
n∑
j=1

bjj

≤
n−1∑
j=1

(λj(A)− λj+1(A))

j∑
k=1

λk(B) + λn(A)
n∑
j=1

λj(B)

=
n∑
j=1

λj(A)λj(B).

(1.3.17)

Definition 1.3.4 (Majorization). Let x, y be two real vectors ordered non-increasingly. We say x ma-
jorizes y, if

∑k
j=1 xj ≥

∑k
j=1 yj for all 1 ≤ k ≤ n and

∑n
j=1 xj =

∑n
j=1 yj .
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Theorem 1.3.5. x majorizes y ⇐⇒ ∃ a doubly-stochastic matrix S s.t. y = Sx.
We say S is a doubly-stochastic matrix, if

Sjk ≥ 0,
n∑
j=1

Sjk = 1 =
n∑
k=1

Sjk, ∀1 ≤ j, k ≤ n. (1.3.18)

To prove Theorem 1.3.5, we need the following lemma:

Lemma 2. x majorizes y ⇐⇒ There exists an orthogonal matrix Q such that [QTdiag(x)Q]ii = yi.

Proof of Lemma 2. The proof is based on the 2× 2 case and then by induction. The complete proof can
be found in the hand-written note.

Proof of Theorem 1.3.5. This is a very fast corollary of Lemma 2, since we have

yj =
n∑
k=1

q2kjxk. (1.3.19)

Let S = (q2kj)
n
j,k=1, then S is a real symmetric matrix and the row-summation of column-summation are

both 1, therefore S is a doubly-stochastic matrix and y = Sx.

1.4 Exercise I
Exercise 1. Show that Mn,m(K)⊗Mr,s(K) =Mnr,ms(K).

Proof. It is easy to see that Mn,m(K) ⊗Mr,s(K) ⊂ Mnr,ms(K). On the other hand, since we have the
explicit description

Mn,m(K)⊗Mr,s(K) = Span{Eij ⊗ Ekl, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ r, 1 ≤ l ≤ s}. (1.4.1)

We have dimMn,m(K) ⊗ Mr,s(K) = nrms = dimMnr,ms(K). Therefore Mn,m(K) ⊗ Mr,s(K) =
Mnr,ms(K).

Exercise 2. Suppose A ∈ B(H) is a self-adjoint compact operator on a Hilbert space H. Let λ1(A) ≥
λ2(A) ≥ · · · be the list of all positive eigenvalues of A. Show that

λk(A) = max
V⊂H,

dimV=k

min
x∈V,∥x∥=1

⟨Ax,x⟩

= min
V⊂H,codimV=k−1

max
x∈V,∥x∥=1

⟨Ax,x⟩
(1.4.2)

Proof. By the spectral theory of compact self-adjoint operators on the Hilbert space, we have

H = kerA⊕

(
∞⊕
i=1

Span(uk)

)
, (1.4.3)

where {uk} are the eigenvectors corresponding to {λk(A)}. Let Sk = Span{uk, uk+1, · · · }, then Sk is a
closed subspace with codimSk = k−1. We take V a k-dimensional subspace of H, then we first consider

π : H → H/Sk, π|V : V → H/Sk. (1.4.4)
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Since V is finite-dimensional, we have

k = dimV = dim(ker π|V)+dim(Im π|V) ≤ dim(V∩Sk)+dim(H/Sk) = dim(V∩Sk)+k−1. (1.4.5)

Therefore, V ∩ Sk ̸= {0}. We take v ∈ V ∩ Sk with ∥v∥ = 1, then by the construction of Sk we have

⟨Av,v⟩ ≤ λk(A) ⇒ inf
x∈V,∥x∥=1

⟨Ax,x⟩ ≤ λk(A). (1.4.6)

Note that the unit ball in H is weak-compact, therefore {x : ∥x∥ = 1} is compact, so we can write

min
x∈V,∥x∥=1

⟨Ax,x⟩ ≤ λk(A). (1.4.7)

By the arbitrariness of V we have

sup
V⊂H,dimV=k

min
x∈V,∥x∥=1

⟨Ax,x⟩ ≤ λk(A). (1.4.8)

Since the equality is achieved when taking V = Span(u1, · · · , uk), we actually have

λk(A) = max
V⊂H,dimV=k

min
x∈V,∥x∥=1

⟨Ax,x⟩ ≤ λk(A). (1.4.9)

The remaining part of the proposition can be proved analogously.

Exercise 3. Suppose A ∈Mn(C) is Hermitian, show that

λ1(A) + · · ·+ λk(A) = sup
P ∗=P=P 2,rankP=k

Tr(AP ), (1.4.10)

λn−k+1(A) + · · ·+ λn(A) = inf
P ∗=P=P 2,rankP=k

Tr(AP ). (1.4.11)

Proof. We do this by intimating the proof of the min-max theorem. In fact, we assume P is the orthogonal
projection to Span(vi)

k
i=1 where {vi}ki=1 is the orthonormal basis. We denote the normalized eigenvectors

of A by {ui}ni=1

Tr(AP ) = Tr(PAP ) =
k∑
i=1

⟨Avi,vi⟩ =
k∑
i=1

〈
n∑
j=1

λj(A)ujcji,
n∑
j=1

ujcji

〉

=
k∑
i=1

n∑
j=1

λj(A)|cji|2 =
n∑
j=1

λj(A)

(
k∑
i=1

|cji|2
) (1.4.12)

By the normalization condition, we have

n∑
j=1

k∑
i=1

|cji|2 =
k∑
i=1

∥vi∥2 = k, 0 ≤
k∑
i=1

|cji|2 ≤ 1. (1.4.13)

therefore,
Tr(AP ) ≤ λ1 + · · ·+ λk. (1.4.14)

By the arbitrariness of the orthogonal projection P , and by taking P ⋆ =
∑k

i=1 uiu
∗
i , we yield the first

equality. The second equality follows by the same procedure.
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Proof using Cauchy interlace theorem. For any orthogonal projection P , by Cauchy interlace theorem,
we have

λn−ℓ+1(A) ≤ λℓ(PAP ) ≤ λℓ(A). (1.4.15)

Note that λk+1(PAP ) = · · · = λn(PAP ) = 0, therefore Tr(PAP ) =
∑k

ℓ=1 λℓ(PAP ). Taking the
summation on both sides of eq. (1.4.15) yields the conclusion.

Exercise 4 (Generalized Weyl inequality). Suppose A,B ∈Mn(C). Show that when 2 ≤ j+ k ≤ n+1,
we have

λj+k−1(|A+B|) ≤ λj(|A|) + λk(|B|). (1.4.16)

When j + k ≥ n+ 1, we have

λj+k−n(|A+B|) ≥ λj(|A|) + λk(|B|). (1.4.17)

Proof. We consider ⋆̃ :=

(
⋆

⋆∗

)
, by Weyl’s inequality for Hermitian case, we have

λj+k−1(Ã+B) ≤ λj(Ã) + λk(B̃), 2 ≤ j + k ≤ n+ 1, (1.4.18)

λj+k−n(Ã+B) ≥ λj(Ã) + λk(B̃), j + k ≥ n+ 1. (1.4.19)

Since we have
λℓ(⋆̃) = λℓ(|⋆|), 1 ≤ ℓ ≤ n, (1.4.20)

we conclude that when 2 ≤ j + k ≤ n+ 1,

λj+k−1(|A+B|) ≤ λj(|A|) + λk(|B|). (1.4.21)

When j + k ≥ n+ 1,
λj+k−n(|A+B|) ≥ λj(|A|) + λk(|B|). (1.4.22)

Exercise 5. Suppose A,B ∈Mn(C), show that for 1/p+ 1/q = 1, p, q > 0,

|ReTr(AB)| ≤

(
n∑
j=1

λj(|A|)p
)1/p( n∑

j=1

λj(|B|)q
)1/q

. (1.4.23)

Proof. We first prove the vN trace theorem for the non-Hermitian scenario. In fact, we consider

⋆̃ :=

(
⋆

⋆∗

)
, (1.4.24)

whose eigenvalues ordered non-increasingly are

λ1(|⋆|) ≥ · · · ≥ λn(|⋆|) ≥ −λn(|⋆|) ≥ · · · ≥ −λ1(|⋆|). (1.4.25)

In our case, we notice that

Ã∗B̃ =

(
A∗

A

)(
B

B∗

)
=

(
A∗B∗

AB

)
. (1.4.26)
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Therefore,
Tr
(
Ã∗B̃

)
= 2Re(Tr(AB)). (1.4.27)

By the vN trace theorem for Hermitian matrices, we have

|Re(Tr(AB))| ≤ 1

2

∣∣∣Tr(Ã∗B̃
)∣∣∣ ≤ 1

2

∣∣∣∣∣∣21/p+1/q

(
n∑
j=1

λj(|A|)p
)1/p( n∑

j=1

λj(|B|)q
)1/q

∣∣∣∣∣∣
=

(
n∑
j=1

λj(|A|)p
)1/p( n∑

j=1

λj(|B|)q
)1/q

(1.4.28)

Exercise 6 (∗). The same assumptions as in exercise 5, show that

|Tr(AB)| ≤

(
n∑
j=1

λj(|A|)p
)1/p( n∑

j=1

λj(|B|)q
)1/q

. (1.4.29)

Proof. By the singular value decomposition, we may assume A is a non-negative diagonal matrix, then
we have

Tr(AB) =
n∑
j=1

σj(A)Bjj =
n∑
j=1

n∑
ℓ=1

σℓ(B)UjℓVjℓσj(A) ⇒ |Tr(AB)| ≤
∑

1≤j,ℓ≤n

σℓ(B)Sjℓσj(A).

(1.4.30)
Here, Sjℓ = |UjℓVjℓ|. Note that

n∑
j=1

Sjℓ ≤

(
n∑
j=1

|Ujℓ|2
)1/2( n∑

j=1

|Vjℓ|2
)1/2

= 1, (1.4.31)

n∑
ℓ=1

Sjℓ ≤

(
n∑
ℓ=1

|Ujℓ|2
)1/2( n∑

ℓ=1

|Vjℓ|2
)1/2

= 1, (1.4.32)

therefore S is a sub-doubly stochastic matrix. There exists a doubly stochastic matrix Q s.t. S ≤ Q. By
Bitkhoff-von Neumann theorem, we have

∃
N∑
k=1

αk = 1, Q =
N∑
k=1

αkPk, Pk permutation matrices. (1.4.33)

Therefore,

|Tr(AB)| ≤
N∑
k=1

αk

n∑
ℓ=1

σℓ(B)σπk(ℓ)(A) ≤
n∑
ℓ=1

σℓ(B)σℓ(A). (1.4.34)

Here, the equality holds if and only if S = I . Then the result follows by the Hölder inequality in the
scalar case.



Chapter 2

Operator Inequalities

2.1 Operator monotonicity and convexity
We recall some basic properties of positive operators:

Proposition 3. ForA,B Hermitian matrices, we defineA ≥ B if and onlyA−B is positive semidefinite.
If A ≥ B, we have

• A+ λI = B + λI , for any λ ∈ R;

• S∗AS ≥ S∗BS, since the positive property is invariant under congruent transformations. Note
that S does not have to be a square matrix.

The question is, whether we have Aα ≥ Bα? It is a very interesting problem and naturally leads to
the concept of operator monotonicity. We begin with an example.

Proposition 4. Let 0 ≤ A ≤ B, then A
1
2 ≤ B

1
2 . If A is invertible, then B−1 ≤ A−1.

Proof. Let A be a invertible matrix, then B is also invertible. By A ≤ B, we we have

B−1/2AB−1/2 ≤ 1. (2.1.1)

(Note that there are also some similar techniques in numerical linear algebra)
To prove B−1 ≤ A−1, we only need to prove A

1
2B−1A

1
2 ≤ 1 i.e.

∥∥∥A 1
2B−1A

1
2

∥∥∥ ≤ 1. To do this, we
note that ∥∥∥A 1

2B−1A
1
2

∥∥∥ = r(A1/2B−1A1/2) = r(B−1/2AB−1/2) =
∥∥B−1/2AB−1/2

∥∥ ≤ 1, (2.1.2)

using the property of the spectral radius r(AB) = r(BA) (follows from the Sylvester determinant the-
orem, σ(AB) ∪ {0} = σ(BA) ∪ {0}. Note that this property also holds for some infinite-dimensional
cases by considering (zI − AB)−1).

Inspired by this, we further consider B−1/4A1/2B−1/4 and we want to estimate its spectral radius. In
fact, ∥∥B−1/4A1/2B−1/4

∥∥ =
∥∥A1/2B−1/2

∥∥ ≤ 1. (2.1.3)

15
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Now we have proved this proposition under the assumption that A is invertible. If A is not invertible,
then for any ε > 0 we have A + εI is invertible since A ≥ 0, and we have A + εI ≤ B + εI , therefore
(A+ εI)1/2 ≤ (B + εI)1/2. Note that∥∥(A+ εI)1/2 − A1/2

∥∥ =
∣∣(λmax + ε)1/2 − λ1/2max

∣∣ ≤ ε1/2. (2.1.4)

Then it follows that A ≤ B by taking ε→ 0.

Definition 2.1.1. A0 := PRangeA, then we have A0 = limm→∞ |A|1/m.

Theorem 2.1.2. Suppose A,B are Hermitian matrices, then

• For any α ∈ [0, 1], we have Aα ≤ Bα.

• If A is invertible, then for any α ∈ [−1, 0], we have Aα ≥ Bα.

Proof. We fixed some A invertible and B ≥ A. We prove by claiming that I := {α ∈ [0, 1] : Aα ≤ Bα}
is a closed convex set. It holds trivially that 0, 1 ∈ I when A > 0.

For any α1, α2 ∈ I , we show using the same approach as in Proposition 4 that

∥C∥ ≤ 1, C := B− 1
4
(α1+α2)A

1
2
(α1+α2)B− 1

4
(α1+α2). (2.1.5)

Therefore we have C ≤ 1 i.e. A
1
2
(α1+α2) ≤ B

1
2
(α1+α2). Thus we conclude that I = [0, 1].

If A is not invertible, we first consider α ∈ (0, 1], (A + εI)α and (B + εI)α. Taking ε → 0, yields
Aα ≤ Bα. When α = 0, we have

A0 = lim
m→∞

A1/m ≤ lim
m→∞

B1/m = B0. (2.1.6)

Another Proof. We provide a constructive and proof with more insights than just imitating Proposition 4.
In fact, we have

0 ≤ A ≤ B ⇒ B−1 ≤ A−1 ⇒ B−1 + λI ≤ A−1 + λI ⇒ (A−1 + λI)−1 ≤ (B−1 + λI)−1. (2.1.7)

Consider
fz(λ) =

z

1 + λz
. (2.1.8)

Note that we have

tα =
sinαπ

π

∫ ∞

0

t

1 + λt
λ−αdλ (α ∈ (0, 1)) ⇒ Aα =

sinαπ

π

∫ ∞

0

fλ(A)λ
−αdα. (2.1.9)

Therefore fλ(A) ≤ fλ(B), i.e. Aα ≤ Bα.
To see why this integral equality holds, we compute∫ ∞

0

ua−1

1 + u
du =

∫
R

eax

1 + ex
dx. (2.1.10)



2.1. OPERATOR MONOTONICITY AND CONVEXITY 17

This is a textbook-example in complex analysis. Specifically, for the contour [−R,R] ∪ [R, 2πi + R] ∪
[2πi + R, 2πi − R] ∪ [2πi − R,−R] = γ1 ∪ γ2 ∪ γ3 ∪ γ4. The only singularity inside the rectangular is
z = πi, with residue being

lim
z→πi

(z − πi)f(z) = lim
z→πi

eaz
z − πi

ez − eπi
= −eaπi. (2.1.11)

Therefore ∫
γ

f(z)dz = −2πieaπi. (2.1.12)

Note that ∣∣∣∣∫
γ2

f

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣ ea(R+it)

1 + eR+it

∣∣∣∣dt ≤ Ce(a−1)R → 0 (R → ∞). (2.1.13)∣∣∣∣∫
γ4

f

∣∣∣∣ ≤ ∫ 2π

0

∣∣∣∣ ea(−R+it)

1 + e−R+it

∣∣∣∣dt ≤ Ce−aR → 0 (R → ∞). (2.1.14)∫
γ3

f =

∫ −R

R

ea(x+i2π)

1 + e(x+i2π)
dx = −e2aπi

∫ R

−R

eax

1 + ex
dx. (2.1.15)

Therefore we have

−2πieaπi = (1− e2aπi)

∫ +∞

−∞

eax

1 + ex
dx⇒

∫ ∞

−∞

eax

1 + ex
dx =

π

sin πa
. (2.1.16)

Remark 4. Using change of variables, we have

tα =
sin(α− 1)π

π

∫ ∞

0

(
t

λ
+

λ

λ+ t
− 1

)
λαdλ, α ∈ (1, 2), (2.1.17)

tα =
sin(α + 1)π

π

∫ ∞

0

1

λ+ t
λαdλ, α ∈ (−1, 0). (2.1.18)

From which we can see that A ≤ B ⇒ Aα ≥ Bα for α ∈ (−1, 0).

Definition 2.1.3 (Operator Monotonicity). Suppose f : Dom(f) → R is a function, where Dom(f) is an
interval in R. If for any n ∈ N, A ≤ B ∈ Mn(C) Hermitian and Sp(A), Sp(B) ⊂ Dom(f), we have
f(A) ≤ (<)f(B), then we say that f is (strictly) operator monotone.

Remark 5. f(t) = tα is operator monotone for α ∈ [0, 1] and is strictly operator monotone for α ∈
(0, 1]. f(t) = −tα is strictly monotone on (0,∞) for α ∈ [−1, 0).

Example 1. Can we prove the operator monotonicity for α > 1?

A =

(
3
2

3
4

)
>

(
1
2

1
2

1
2

1
2

)
= B. (2.1.19)

Note that

Bα = B =

(
1
2

1
2

1
2

1
2

)
. (2.1.20)
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We compute

det(Aα −Bα) =

[(
3

2

)α
− 1

2

] [(
3

4

)α
− 1

2

]
− 1

4
=

(
9

8

)α
− 1

2

[(
3

2

)α
+

(
3

4

)α]
=

(
3

8

)α
(2 · 3α − (4α + 2α)) < 0 (by convexity)

(2.1.21)

Therefore, although xα is strictly monotone for |α| > 1, but is not operator monotone.
The operator monotonicity is a very good property in quantum information theory, and usually cannot

be satisfied.

Proposition 5. f(t) = log t is operator on (0,∞). f(t) = t−1
log t

operator on [0,∞).

Proof. log t = limα→0+
tα−1
α

, then by tα−1
α

is operator monotone we conclude log t is also operator
monotone. Moreover, t−1

log t
=
∫ 1

0
tλdλ.

Remark 6. t log t is not operator monotone.

A logA =

(
3
2
log 3

2
3
4
log 3

4

)
̸≥ B logB = 0, since B =

(
1
2

1
2

1
2

1
2

)
is a projection. (2.1.22)

Remark 7. In general, the function taking the form

f(t) = at+ b+

∫ ∞

0

λt

t+ λ
dµ(λ) (2.1.23)

is operator monotone on [0,∞). Here, µ(λ) is a positive Borel measure.

Proposition 6. Let A,B be Hermitian matrices. Then we have, (A+B
2

)2 ≤ A2+B2

2
.

Proof. (
A+B

2

)2

≤ A2 +B2

2
⇔ A2 − AB −BA+B2 ≥ 0 ⇔ (A−B)2 ≥ 0. (2.1.24)

Definition 2.1.4 (Operator convex). Suppose f : Dom(f) ⊂ R → R is a function where Dom is an
interval. We say that f is operator convex, if for any Hermitian matrices A,B with Sp(A), Sp(B) ⊂
Dom(f), we have

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B), ∀λ ∈ [0, 1]. (2.1.25)

Theorem 2.1.5. The following functions are operator convex:

• the function tα on (0,∞), α ∈ [−1, 0);

• the function tα on [0,∞), α ∈ [1, 2];

• the function −tα on [0,∞), α ∈ [0, 1];

• the function t2 on (−∞,∞).
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Proof. Step 1. We prove that for A,B > 0, A
−1+B−1

2
≥
(
A+B
2

)−1. We consider

A1/2A
−1 +B−1

2
A1/2 =

1

2

(
I + A1/2B−1A1/2

)
, (2.1.26)

A1/2

(
A+B

2

)−1

A1/2 =

(
I + A−1/2BA−1/2

2

)−1

. (2.1.27)

Denote X = A1/2B−1X1/2 > 0, then we only need to prove

1 +X

2
≥
(
1 +X−1

2

)−1

i.e.
(
1 +X

2

)−1

≤ 1 +X−1

2
. (2.1.28)

This follows readily by the convexity of t−1 on (0,∞).
Step 2. By eq. (2.1.18) and the convexity of the function t 7→ 1

λ+t
, we have tα, α ∈ (−1, 0) is

operator convex. By eq. (2.1.9) and the convexity of the function t 7→ 1
λ+t

, we have −tα, α ∈ (0, 1) is
operator convex. By eq. (2.1.17) and the convexity of t 7→ t

λ
+ λ

λ+t
for α ∈ (1, 2).

Step 3. For α = 0, note that
PRange(A) = lim

m→∞
A1/m. (2.1.29)

Therefore −t0 is operator convex (but not strictly operator convex, for example, consider B = 2A).

Corollary 1. The function f(t) = log t on (0,∞) is operator concave.
The function f(t) = t log t on [0,∞) is operator convex.
The function f(t) = t−1

log t
on [0,∞) is operator concave.

Proof.

log t = lim
α→0+

α−1(tα − 1), t log t = lim
α→1+

tα − 1

α− 1
,

t− 1

log t
=

∫ 1

0

tλdλ. (2.1.30)

2.2 Non-commutative Jensen inequality
Is there any relation between operator concavity and operator monotonicity? This leads to a quite pro-
found result: non-commutative Jensen inequality.

Proposition 7 (Sherman-Davis). Suppose f : Dom(f) → R is an operator convex function, then for any
n ∈ N and A ∈Mn(C) Hermitian with Sp(A) ⊂ Dom(f) and some projection P ∈Mn(C), we have

Pf(PAP + s(1− P ))P ≤ Pf(A)P. (2.2.1)

Here, s ∈ Dom(f)

Remark 8. Note that in the definition of operator convexity, we already assume that Dom(f) is an
interval in R, which ensures that Sp(PAP )\{0} ⊂ Dom(f) by the fact that Sp(A) ⊂ Dom(f) and
Cauchy interlace theorem.

We add the term s(1 − P ) because we likely have 0 ∈ Sp(PAP ) but 0 /∈ Dom(f). To deal with
this and maximize the generality of our result, we add this term to ensure that Sp(PAP + s(1 − P )) ⊂
Dom(f), since we note that for any x ∈ kerP ,

(PAP + s(1− P ))x = 0 + sx− 0 = sx, s ∈ Dom(f). (2.2.2)
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Proof. Consider Ã =

(
A

A

)
, U =

(
P P − I

I − P P

)
(note that this is a very common strategy to

construct a unitary matrix), and U⊥ =

(
I − P −P
P I − P

)
.

Since U and U⊥ are unitary, therefore

UÃU∗ =

(
PAP + (I − P )A(I − P ) (P − I)AP + PA(I − P )
(I − P )AP + PA(P − I) (I − P )A(I − P ) + PAP

)
, (2.2.3)

U⊥ÃU
∗
⊥ =

(
PAP + (I − P )A(I − P ) (P − I)AP + PA(P − I)
(P − I)AP + PA(I − P ) (I − P )A(I − P ) + PAP

)
, (2.2.4)

and then

1

2
(UÃU∗ + U⊥ÃU

∗
⊥) = diag(PAP + (I − P )A(I − P ), PAP + (I − P )A(I − P )). (2.2.5)

By functional calculus and the convexity of f , we have

f

[
1

2
(UÃU∗ + U⊥ÃU

∗
⊥)

]
≤ 1

2

[
Uf(Ã)U∗ + U⊥f(Ã)U

∗
⊥

]
. (2.2.6)

We take the (1, 1)-block

f(PAP + (I − P )A(I − P )) ≤ Pf(A)P + (I − P )f(A)(I − P ). (2.2.7)

Hence we have
Pf(PAP + s(I − P ))P ≤ Pf(A)P. (2.2.8)

Remark 9. A very straightforward understanding is to consider the “matrix form” of PAP + (I −
P )A(I −P ), which is “block-diagonalized” under the basis of RangeP and its orthogonal complement.
In this case we solely need to consider the (1, 1)-block. The rest (2, 2)-block is irrelevant to the inequality
and we can write in a quite general form (replacing (I − P )A(I − P ) by s(I − P )), which is also well-
defined because s ∈ Dom(f).

Proposition 8. Suppose f : Dom(f) → R is a function, where Dom(f) is an interval in R. If for
any n ∈ N, Hermitian matrices A ∈ Mn(C) with Sp(A) ⊂ Dom(f) and projection P , the inequality
Pf(PAP + s(I − P ))P ≤ Pf(A)P holds for any s ∈ Dom(f), then f must be operator convex.

Proof. We take A,B ∈Mn(C) Hermitian, λ ∈ [0, 1] along with

Ã =

(
A

B

)
, P =

(
I

)
, U =

( √
λI −

√
1− λI√

1− λI
√
λI

)
. (2.2.9)

We compute

UÃU∗ =

(
λA+ (1− λ)B ∗

∗ (1− λ)A+ λB

)
. (2.2.10)

By our assumption, we have

Pf(PUÃU∗P + s(I − P ))P ≤ PUf(Ã)U∗P, (2.2.11)
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Note that

P (UÃU∗)P =

(
λA+ (1− λ)B

)
, (2.2.12)

f(P (UÃU∗)P + s(I − P )) =

(
f(λA+ (1− λ)B)

f(s)I

)
, (2.2.13)

Pf(P (UÃU∗)P+s(I−P ))P =

(
f(λA+ (1− λ)B)

)
, PUf(Ã)U∗P =

(
λf(A) + (1− λ)f(B)

)
(2.2.14)

We read the (1, 1)-block, yielding

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B). (2.2.15)

Therefore f is operator convex.

Remark 10. This proposition gives a much more simplified characterization of the operator convexity.

In fact, we can extend the Sherman-Davis inequality to the case of partial isometries, which corre-
sponds to a slightly different truncation approach compared to the case of projection.

Proposition 9 (Sherman-Davis). Suppose f : Dom(f) → R is an operator convex function, then for any
n ∈ N and A ∈ Mn(C) Hermitian with Sp(A) ⊂ Dom(f) and some partial isometry V ∈ Mn(C), we
have

V V ∗f(V AV ∗ + s(1− V V ∗))V V ∗ ≤ V f(A)V ∗. (2.2.16)

Here, s ∈ Dom(f).

Remark 11. We say V is a partial isometry iff V V ∗ and V ∗V are both projections.

Proof. Totally similar to Proposition 7. We take A = ( A A ) and U =
(

V V⊥
1−|V | 1−|V⊥|

)
(V = Q|V | for

some unitary Q) and V⊥ is defined s.t. V V ∗ + V⊥V
∗
⊥ = I . Then we do the same calculation.

Theorem 2.2.1 (Noncommutative Jensen Inequality). Suppose f : Dom(f) → R is an operator convex
function on some interval in R, A1, · · · , Am ∈ Mn(C) are Hermitian such that Sp(Aj) ⊂ Dom(f), and
V1, · · · , Vm ∈Mn(C) such that

∑m
j=1 V

∗
j Vj = I , then

f

(
m∑
j=1

V ∗
j AjVj

)
≤

m∑
j=1

V ∗
j f(Aj)Vj. (2.2.17)

Remark 12. Do not require each Vj to be a partial isometry. This is very useful in quantum information
theory.

Proof. We take

Ṽ =


V ∗
1 · · · V ∗

m

0 · · · 0
... . . . ...
0 · · · 0

, A =

A1

. . .
Am

. (2.2.18)
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Note that Ṽ is a partial isometry, therefore by Proposition 9, we have

Ṽ Ṽ ∗f(Ṽ AṼ ∗ + s(1− Ṽ Ṽ ∗)) ≤ Ṽ f(A)Ṽ ∗. (2.2.19)

Computing each side, we obtain(
f(
∑m

j=1 V
∗
j AjVj)

)
≤
(∑m

j=1 V
∗
j f(Aj)Vj

)
, (2.2.20)

i.e.

f

(
m∑
j=1

V ∗
j AjVj

)
≤

m∑
j=1

V ∗
j f(Aj)Vj. (2.2.21)

Remark 13. This theorem formally resembles the classical Jensen inequality. Moreover, by the charac-
terization Proposition 8, the Jensen inequality implies operator convexity.

By previous results, we use the additive term to deal with the case where 0 ∈ Dom(f). Next we will
explore another different way to understand the 0 ∈ Dom(f) case.

Theorem 2.2.2. 0 ∈ Dom(f) is an interval, then TFAE:

• f is operator convex and f(0) ≤ 0;

• For any n ∈ N, X ∈ Mn(C) with ∥X∥ ≤ 1 and Hermitian matrix A ∈ Mn(C) with Sp(A) ⊂
Dom(f), the following inequality holds:

f(X∗AX) ≤ X∗f(A)X. (2.2.22)

This inequality is sometimes also called noncommutative Jensen inequality.

Proof. ⇒: Let

Ã =

(
A

0

)
, U =

(
X (I −XX∗)1/2

(I −X∗X)1/2 −X∗

)
, V =

(
X −(I −XX∗)1/2

−(I −X∗X)1/2 X∗

)
(2.2.23)

Remark 14. In quantum algorithm community, the construction of U is a very good example of “block-
encoding” of X . The condition ∥X∥ ≤ 1 is necessary.

For simplicity, we let Y = (I −XX∗)1/2. By operator convexity

f

(
U∗ÃU + V ∗ÃV

2

)
≤ f(U∗ÃU) + f(V ∗ÃV )

2
. (2.2.24)

The left hand side is diag(f(X∗AX), f(Y AY )). The right hand side is

1

2
U∗
(
f(A)

f(0)I

)
U +

1

2
V ∗
(
f(A)

f(0)I

)
V ≤ 1

2
U∗
(
f(A)

0

)
U +

1

2
V ∗
(
f(A)

0

)
V

=

(
X∗f(A)X

Y f(A)Y

)
.

(2.2.25)



2.2. NON-COMMUTATIVE JENSEN INEQUALITY 23

We read the (1, 1)-block, this implies that f(X∗AX) ≤ X∗f(A)X .
⇐: Suppose A,B ∈Mn(C) are Hermitian and 0 ≤ λ ≤ 1. Let

Ã =

(
A

B

)
, P =

(
I 0
0 0

)
, U =

( √
λ −

√
1− λ√

1− λ
√
λ

)
. (2.2.26)

Then it is totally the same as Proposition 8.

Corollary 2. Same assumptions, TFAE

• f is operator convex and f(0) ≤ 0,

• For any n ∈ N, Hermitian matrices Aj with Sp(Aj) ⊂ Dom(f), and Vj s.t.
∑m

j=1 V
∗
j Vj ≤ 1, we

have

f

(
m∑
j=1

V ∗
j AjVj

)
≤

m∑
j=1

V ∗
j f(Aj)Vj. (2.2.27)

Corollary 3. Let A ≥ 0, X ∈Mn(C), ∥X∥ ≤ 1, α ≤ [0, 1], then

X∗AαX ≤ (X∗AX)α. (2.2.28)

Proof. tα, α ∈ (0, 1] is an operator concave function and f(0) = 0, then it follows from Theorem 2.2.2.
Then let α → 0.

Proposition 10. f : [0, b) → R, b > 0, then TFAE:

• f is operator convex and f(0) ≤ 0;

• f0 is operator convex and f(0+) ≤ f(0) ≤ 0. Here

f0(t) =

{
f(t), t ∈ (0, b),

f(0+) = limt→0+ f(t), t = 0.
(2.2.29)

Proof. ⇒: It is obvious that f0 is operator convex on (0, b). By Löwner’s theorem, f ∈ C2(0, b),
therefore f0 is operator convex on [0, b). Moreover

f(0+) = lim
t→0+

f(t) ≤ lim sup
t→0+

f(0) + f(2t)

2
=
f(0+) + f(0)

2
⇛ f(0+) ≤ f(0). (2.2.30)

⇐: By the characterization of operator convexity in Proposition 8, we need to verify that ∀P ∈
Mn(C) projection, A ≥ 0, we have f(PAP ) ≤ Pf(A)P . By the operator convexity of f0, we have
f0(PAP ) ≤ Pf0(A)P . Note that

f(PAP ) = f0(PAP ) + [f(0)− f0(0)]Pker(PAP ), (2.2.31)

f(A) = f0(A) + [f(0)− f0(0)]PkerA, (2.2.32)

Pf(A)P = Pf0(A)P + [f(0)− f0(0)]PPkerAP. (2.2.33)

We note that f0(PAP ) = Pf0(PAP )P and

Pker(PAP ) = PPker(PAP )P + (I − P )Pker(PAP )(I − P ) (2.2.34)
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⇒ [f(0)− f0(0)]Pker(PAP ) = [f(0)− f0(0)]PPker(PAP )P + [f(0)− f0(0)](I − P )Pker(PAP )(I − P )

≤ [f(0)− f0(0)]PPker(PAP )P + f(0)(I − P )Pker(PAP )(I − P )

≤ [f(0)− f0(0)]PPker(PAP )P + f(0)(I − P )I(I − P )

= [f(0)− f0(0)]PPker(PAP )P + (I − P )f(0).
(2.2.35)

Therefore we have

f(PAP ) ≤ f0(PAP )+[f(0)−f0(0)]PPker(PAP )P+(I−P )f(0) ≤ f0(PAP )+[f(0)−f0(0)]PPker(PAP )P.
(2.2.36)

The last inequality follows from f(0) ≤ 0. Comparing with eq. (2.2.33) and noting f0(PAP ) ≤
Pf0(A)P , it only remains to show that [f(0) − f0(0)]PPker(PAP )P ≤ [f(0) − f0(0)]PPkerAP . Since
f0(0) = f(0+) ≤ f(0), we only need to verify PPker(PAP )P ≤ PPkerAP . By Corollary 3 we have

PRange(PAP ) ≥ PPRange(A)P, (2.2.37)

i.e.
P − PPker(PAP )P ≥ P − PPkerAP ⇒ PPker(PAP )P ≤ PPkerAP. (2.2.38)

Proposition 11. Let f : [0, b) → R, b > 0, then TFAE:

• f is operator concave and f(0) ≤ 0;

• f(t)
t

is operator monotonic on (0, b).

Proof. ⇒: Let 0 < A ≤ B, X := B−1/2A, then by the operator convexity of f , we have

f(X∗BX) ≤ X∗f(B)X ⇒ f(A) ≤ X∗f(B)X = A1/2B−1/2f(B)B−1/2A1/2. (2.2.39)

Therefore
A−1/2f(A)A1/2 ≤ B−1/2f(B)B1/2 ⇒ A−1f(A) ≤ B−1f(B). (2.2.40)

⇐: f(t)
t

is operator monotonic ⇒ f is continuous. We need to show that for P ∈ Mn(C) a projection,
A ∈Mn(C) Hermite,

f(PAP ) ≤ Pf(A)P. (2.2.41)

Take Pε = P + ε(I − P ), Aε = A + εI . Then for ε > 0 sufficiently small, Pε ≤ 1, Aε is invertible and
therefore

A1/2
ε PεA

1/2
ε ≤ Aε. (2.2.42)

We denote h(t) = f(t)/t, then by operator monotonicity, we have

h(A1/2
ε PεA

1/2
ε ) ≤ h(Aε) ⇒ PεA

1/2
ε h(A1/2

ε PεA
1/2
ε )PεA

1/2
ε ≤ PεA

1/2
ε h(Aε)PεA

1/2
ε . (2.2.43)

By polar decomposition, X = R|X|, we have

Xh(X∗X)X∗ = R|X|h(|X|2)|X|R∗ = Rh(|X|2)|X|2R∗ = h(R|X|2R∗)R|X|2R∗ = h(XX∗)XX∗.
(2.2.44)

⇒ f(PεAεPε) ≤ Pεf(Aε)Pε. (2.2.45)

We take ε → 0 and by the continuity of f , we conclude that f0(PAP ) ≤ Pf0(A)P . Therefore f0 is
operator convex. By Proposition 10, f is operator convex.
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Remark 15. From this we can easily see that f(t) = fα(α > 2) is not operator convex since otherwise,
f(t)
t

is operator monotonic. But tα−1 is definitely not operator monotonic, which is a contradiction.

Theorem 2.2.3. f : [0,∞) → [0,∞), then TFAE:

• f is operator concave;

• f is operator monotonic.

Lemma 3. A,C are positive semidefinite matrices, A is invertible and B ∈Mn(C), then(
A B
B∗ C

)
≥ 0 ⇐⇒ C ≥ B∗A−1B. (2.2.46)

Proof. We first note that(
A

1
2 0

B∗A− 1
2 0

)(
A

1
2 A− 1

2B
0 0

)
=

(
A B
B∗ B∗A−1B

)
≥ 0. (2.2.47)

⇐: (
A B
B∗ C

)
=

(
A B
B∗ B∗A−1B

)
+

(
0 0
0 C −B∗A−1B

)
≥ 0. (2.2.48)

⇒:

0 ≤
〈(

A B
B∗ C

)(
−A−1Bξ

ξ

)
,

(
−A−1Bξ

ξ

)〉
=

〈(
0

(C −B∗A−1B)ξ

)
,

(
−A−1Bξ

ξ

)〉
= ⟨(C −B∗A−1B)ξ, ξ⟩.

(2.2.49)

Proof of Theorem 2.2.3. ⇒: We take 0 ≤ A ≤ B, λ ∈ (0, 1):

f(λB) = f

(
λA+ (1− λ)

1

1− λ
(B − A)

)
≥ λf(A) + (1− λ)f

(
λ

1− λ
(B − A)

)
. (2.2.50)

This inequality follows from the operator concavity of f . Let λ→ 0, we have

f0(B) ≥ f0(A). (2.2.51)

Moreover, since f0(A) ≤ f0(B), PkerA ≥ PkerB, f(0)− f(0+) ≤ 0, we have

f(A) = f0(A) + [f(0)− f(0+)]PkerA ≤ f0(B) + [f(0)− f(0+)]PkerB = f(B). (2.2.52)

Therefore,
f(A) ≤ f(B). (2.2.53)

⇐: We need to show that for A Hermitian, X ∈Mn(C), ∥X∥ ≤ 1, we have f(X∗AX) ≤ X∗f(A)X .
We take

Ã =

(
A

0

)
, U =

(
X (I −XX∗)1/2

(I −X∗X)1/2 −X∗

)
. (2.2.54)
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Then we have

U∗ÃU =

(
X∗AX ∗

∗ ∗

)
, U∗f(Ã)U =

(
X∗f(A)X ∗

∗ ∗

)
. (2.2.55)

We take

B̃ =

(
X∗AX + εI 0

0 γI

)
, (2.2.56)

then when γ is large enough, we have B̃ ≥ U∗AU by Lemma 3. Then by the operator monoticity of f ,
we have

f(B̃) ≥ U∗f(Ã)U. (2.2.57)

We read the (1, 1)-block, we have

f(X∗AX + εI) ≥ X∗f(A)X. (2.2.58)

We take ε→ 0, we have
f0(X

∗AX) ≥ X∗f0(A)X. (2.2.59)

Therefore f0 is operator concave and f(0+) ≥ f(0) ≥ 0, and by Proposition 10, f is operator concave.

Proposition 12. f : (0,∞) → (0,∞), then TFAE:

• f is operator monotonic;

• t/f(t) is operator monotonic;

• f is operator concave.

Proof. Use Theorem 2.2.3 and Proposition 11 repeatly.

2.3 Operator mean-value inequalities
We denote the set of n× n Hermitian matrices by Hn. We denote the set of positive definite matrices by
H>0
n .

Definition 2.3.1 (Harmonic mean). ForA,B ∈Mn(C) positive definite (to ensure that it is well-defined),
the harmonic mean of A and B is defined as

M−1(A,B) :=

(
A−1 +B−1

2

)−1

. (2.3.1)

We can easily verify that:

M−1(A,B) = 2B(B + A)−1A = 2A(A+B)−1B. (2.3.2)

Theorem 2.3.2 (Ando’s variational formula (for harmonic mean)). Let A,B > 0, then

sup

{
X ∈ Hn :

(
A 0
0 B

)
≥ 1

2

(
X X
X X

)}
=M−1(A,B). (2.3.3)
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Proof. Let X s.t.
(
A 0
0 B

)
≥ 1

2

(
X X
X X

)
(Note that RHS = 1

2
X ⊗

(
1 1
1 1

)
). We take

U =
1

2

(
1 −1
1 1

)
, U∗

(
A

B

)
U =

1

2

(
A+B A−B
A−B A+B

)
. (2.3.4)

Moreover

U∗
(
X X
X X

)
U =

(
0 0
0 2X

)
. (2.3.5)

Therefore we have (
A+B A−B
A−B A+B

)
≥
(
0 0
0 2X

)
. (2.3.6)

Recall.
(
A B
B∗ C

)
≥ 0 ⇐⇒ C ≥ B∗A−1B.

Hence
A+B − 2X ≥ (A−B)(A+B)−1(A−B). (2.3.7)

We calculate the right hand side:

(A−B)(A+B)−1(A−B) = A(A+B)−1A−B(A+B)−1A− A(A+B)−1B +B(A+B)−1B

= A(A+B)−1A+B(A+B)−1B − 2M−1(A,B).
(2.3.8)

And note that

A+B = (A+B)(A+B)−1(A+B) = A(A+B)−1A+B(A+B)−1B + 2M−1(A,B). (2.3.9)

Therefore we have
A+B − 2X ≥ A+B − 4M−1(A,B), (2.3.10)

i.e.
X ≤M−1(A,B). (2.3.11)

Another Proof.
(
A 0
0 B

)
≥ 1

2

(
X X
X X

)
is equivalent to(

I
I

)
≥ 1

2

(
A−1/2

B1/2

)(
X X
X X

)(
A−1/2

B1/2

)
. (2.3.12)

We use the argument of spectral radius to “flip” the inequality, obtaining

1

4

(√
X

√
X√

X
√
X

)(
A−1

B−1

)(√
X

√
X√

X
√
X

)
≤
(
I 0
0 I

)
. (2.3.13)

We do the some calculations and obtain
1

4

(√
X(A−1 +B−1)

√
X

√
X(A−1 −B−1)

√
X√

X(A−1 −B−1)
√
X

√
X(A−1 +B−1)

√
X

)
≤
(
I 0
0 I

)
. (2.3.14)

We define C := 1
2

√
X(A−1 +B−1)

√
X , then we have C∗C ≤ I ⇒ C ≤ I , i.e.

1

2

√
X(A−1 +B−1)

√
X ≤ I ⇒ X ≤M−1(A,B). (2.3.15)
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Drawing from the another proof, we can generalize the Ando’s variational formula to

Proposition 13 (m-variables Ando’s variational formula). Let A1, · · · , Am > 0, then

sup

X ∈ Hn :

A1 · · · 0
. . .

0 · · · Am

 ≥ 1

m


X X · · · X
X X · · · X
...

... . . . ...
X X · · · X


 =

(
A−1

1 + · · ·+ A−1
m

m

)−1

. (2.3.16)

Definition 2.3.3 (Joint convexity). f : X1 ×X2 → Y , if for λ ∈ [0, 1], x1, y1 ∈ X1, x2, y2 ∈ X2, we have

f(λx1 + (1− λ)y1, λx2 + (1− λ)y2) ≤ λf(x1, x2) + (1− λ)f(y1, y2), (2.3.17)

then we say f is joint convex.

Proposition 14. The mapping (A,B) 7→ B∗A−1B is joint concave on H>0
n ×Mn(C).

Proof. We take A1, A2 > 0, B1, B2 ∈Mn(C), λ ∈ [0, 1]. We have

λ

(
A1 B1

B∗
1 B∗

1A
−1
1 B1

)
+ (1− λ)

(
A2 B2

B∗
2 B∗

2A
−1
2 B2

)
≥ 0. (2.3.18)

Therefore

λB∗
1A

−1
1 B1+(1−λ)B∗

2A
−1
2 B2 ≥ (λ1B

∗
1+(1−λ)B∗

2)(λA1+(1−λ)A2)
−1(λB1+(1−λ)B2). (2.3.19)

Therefore, the mapping is joint concave.

Remark 16. This is a very important and classical example of joint concavity. It is closely related to the
(generalized) Lieb’s concavity, as we may see later in section 3.7.

Proposition 15. M−1 is joint concave on H>0
n ×H>0

n .

Proof. Take A1, A2 > 0, B1, B2 > 0, λ ∈ [0, 1]. We have

λ

2

[
M−1(A1, B1)⊗

(
1 1
1 1

)]
+

1− λ

2

[
M−1(A2, B2)⊗

(
1 1
1 1

)]
(Ando’s variational formula)

≤ λ

(
A1

B1

)
+ (1− λ)

(
A2

B2

)
=

(
λA1 + (1− λ)A2

λB1 + (1− λ)B2

)
.

(2.3.20)
⇒M−1(λA1 + (1− λ)A2, λB1 + (1− λ)B2) ≥ λM−1(A1, B1) + (1− λ)M−1(A2, B2). (2.3.21)

The last inequality follows from the Ando’s variational formula Theorem 2.3.2 again (i.e. M−1 is the
maximizer of the variational formula). Therefore, M−1 is joint concave.

Proposition 16. M−1 is operator monotone with respect to each component on H>0
n ×H>0

n .

Proof. Let A1 ≤ A2 be two positive definite matrices, then

1

2

(
M−1(A1, B) M−1(A1, B)
M−1(A1, B) M−1(A1, B)

)
≤
(
A1 0
0 B

)
≤
(
A2 0
0 B

)
. (2.3.22)

By the Ando’s variational formula, we have

M−1(A2, B) ≥M−1(A1, B). (2.3.23)
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Remark 17. We can see that the results for harmonic mean are very clean and elegant. In fact, the har-
monic mean can be viewed as some “projection” from Mn(C)⊗M2(C) to Mn(C) along the “direction”

of
(
1 1
1 1

)
.

Next we will introduce the geometric mean. At first glance, the geometric mean is not as clean as the
harmonic mean, but we will see later that this definition is reasonable and natural.

Definition 2.3.4 (Geometric mean). For A,B ∈ Mn(C) positive definite, the geometric mean of A and
B is defined as

M0(A,B) := A1/2(A−1/2BA−1/2)1/2A1/2. (2.3.24)

Similar to the case of harmonic mean, we also have the Ando’s variational formula for geometric
mean.

Theorem 2.3.5 (Ando’s variational formula (for geometric mean)). Let A,B > 0, then

sup

{
X ∈ Hn :

(
A 0
0 B

)
≥ −

(
0 X
X 0

)}
=M0(A,B). (2.3.25)

Proof. We take X s.t. ( A X
X B ) ≥ 0. Therefore we have

B ≥ X∗A−1X = XA−1X. (2.3.26)

Consider A−1/2BA−1/2, we have

A−1/2BA−1/2 ≥ (A−1/2XA−1/2)(A−1/2XA−1/2). (2.3.27)

Therefore, by the operator monotonicity of t 7→ t1/2, we have

A−1/2XA−1/2 ≤ (A−1/2BA−1/2)1/2 ⇒ The original equality holds. (2.3.28)

Remark 18. We can also use the Ando’s variational formula for geometric mean to show thatM0 is joint
concave by putting M0 on the off-diagonal block.

Proposition 17. • M0 is joint concave;

• (symmetric) M0(B,A) =M0(A,B);

• For any invertible matrix D, M0(D
∗AD,D∗BD) = D∗M0(A,B)D;

• M0 is operator monotone with respect to each component.

• M−1(A,B) ≤M0(A,B) ≤ A+B
2

.

Proof. • By the Ando’s variational formula, we have

λ

(
A1 M0(A1, B1)

M0(A1, B1) B1

)
+ (1− λ)

(
A2 M0(A2, B2)

M0(A2, B2) B2

)
≥ 0. (2.3.29)
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This holds because the variational formula implies that each additive term is positive semidefinite.
That is to say(

λA1 + (1− λ)A2 M0(λA1 + (1− λ)A2, λB1 + (1− λ)B2)
M0(λA1 + (1− λ)A2, λB1 + (1− λ)B2) λB1 + (1− λ)B2

)
≥ 0.

(2.3.30)
By the Ando’s variational formula again (the geometric mean maximizes the 2 by 2 block matrix),
we have

M0(λA1 + (1− λ)A2, λB1 + (1− λ)B2) ≥ λM0(A1, B1) + (1− λ)M0(A2, B2). (2.3.31)

• We consider X =

(
0 I
I 0

)
, then

X

(
A M0(A,B)

M0(A,B) B

)
X =

(
B M0(A,B)

M0(A,B) A

)
≥ 0. (2.3.32)

By the Ando’s variational formula, we have

M0(B,A) ≥M0(A,B)
symmetrically

≥ M0(B,A) ⇒ M0(B,A) =M0(A,B). (2.3.33)

• We compute(
D∗

D∗

)(
A M0(A,B)

M0(A,B) B

)(
D

D

)
=

(
D∗AD D∗M0(A,B)D

D∗M0(A,B)D D∗BD

)
≥ 0.

(2.3.34)
Therefore

M0(D
∗AD,D∗BD) ≥ D∗M0(A,B)D. (2.3.35)

Moreover, we use eq. (2.3.35) again

M0(A,B) =M0(D
−∗(D∗AD)D−1, D−∗(D∗BD)D−1) ≥ D−∗M0(D

∗AD,D∗BD)D−1.
(2.3.36)

Plugging it back to eq. (2.3.35), we obtain

M0(D
∗AD,D∗BD) ≥ D∗M0(A,B)D ≥ D∗D−∗M0(D

∗AD,D∗BD)D−1D

=M0(D
∗AD,D∗BD) ⇒M0(D

∗AD,D∗BD) = D∗M0(A,B)D.
(2.3.37)

• Note that

−
(

0 M0(A1, B)
M0(A1, B) 0

)
≤
(
A1 0
0 B

)
≤
(
A2 0
0 B

)
. (2.3.38)

Therefore, by the maximization condition of the variational formula, we have

M0(A2, B) ≥M0(A1, B). (2.3.39)

By symmetry, we have M0 is operator monotone with respect to each component.
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• We take X = A−1/2BA−1/2, then by(
1 + t−1

2

)
≤ t1/2 ≤ 1 + t

2
⇒
(
1 +X−1

2

)−1

≤ X1/2 ≤ 1 +X

2
, (2.3.40)

we conclude that the original inequality holds.

We next present a very profound application of the geometric mean—Ando’s convexity.

Theorem 2.3.6 (Ando’s convexity). 0 < p, r ≤ 1, p+ r ≥ 1, then

(A,B) 7→ Ap ⊗Br (2.3.41)

is joint concave on H>0
n ×H>0

n .

Proof. • We take Λ = {(p, r) : Ap ⊗Br is joint concave}. We have (0, 0), (1, 0), (0, 1) ∈ Λ.

• We next show that Λ is a convex set. We take (p1, r1), (p2, r2) ∈ Λ, we need to verify that (p, r) :=(
p1+p2

2
, r1+r2

2

)
∈ Λ. By the commutative of tensor product and the definition of geometric mean,

we have
Ap ⊗Br = A

p1+p2
2 ⊗B

r1+r2
2 =M0(A

p1 ⊗Br1 , Ap2 ⊗Br2). (2.3.42)

• We take A1, A2 > 0, B1, B2 > 0, then by (pi, ri) ∈ Λ, we have(
A1 + A2

2

)pi
⊗
(
B1 +B2

2

)ri
≥ 1

2
(Api1 ⊗Bri

1 + Api2 ⊗Bri
2 ) , i = 1, 2 (2.3.43)

Therefore,(
A1 + A2

2

)p
⊗
(
B1 +B2

2

)r
=M0

((
A1 + A2

2

)p1
⊗
(
B1 +B2

2

)r1
,

(
A1 + A2

2

)p2
⊗
(
B1 +B2

2

)r2)
monotonicity of M0 and eq. (2.3.42)

≥ M0

(
Ap11 ⊗Br1

1 + Ap12 ⊗Br1
2

2
,
Ap21 ⊗Br2

1 + Ap22 ⊗Br2
2

2

)
joint concavity of M0

≥ 1

2
M0(A

p1
1 ⊗Br1

1 , A
p2
1 ⊗Br2

1 ) +
1

2
M0(A

p1
2 ⊗Br1

2 , A
p2
2 ⊗Br2

2 )

=
1

2
(Ap1 ⊗Br

1 + Ap2 ⊗Br
2) .

(2.3.44)

Thus (p, r) ∈ Λ.

Corollary 4. 0 ≤ p1, · · · , pm ≤ 1,
∑m

j=1 pj ≤ 1, then

(A1, · · · , Am) 7→ Ap11 ⊗ · · · ⊗ Apmm (2.3.45)

is joint concave on H>0
n × · · · ×H>0

n .
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Next we explore the “geometric description” of the geometric mean.

Lemma 4.

dn

dtn
(A+ tX)−1 = (−1)nn!(A+ tX)−

1
2 [(A+ tX)−

1
2X(A+ tX)−

1
2 ]n(A+ tX)−

1
2 . (2.3.46)

Remark 19. More generally, we have

d

dt
(A+X(t))−1 = −(A+X(t))−1 d

dt
X(t)(A+X(t))−1. (2.3.47)

Theorem 2.3.7. Let f be a continuous differentiable function, X is a Hermitian matrix, Sp(A) ⊂
Dom(f), A = diag(t1, · · · , tn), then d

dt
f(A+ tX) = D ◦X , here

Djk =

{
f(tj)−f(tk)

tj−tk
, j ̸= k,

f ′(tj), j = k.
(2.3.48)

Proof. Without loss of generality, we assume f is analytic. (Otherewise, we can use C1 function to
approximate f (we can always take a compact set since Sp(A) is bounded)). We have

f(A+ tX) =
1

2πi

∫
γ

f(z)(zI − A− tX)−1dz. (2.3.49)

Here we take γ efficiently large to enclose Dom(f), Sp(A) and Sp(A+ tX). Then we have

d

dt
f(A+ tX) =

1

2πi

∫
γ

f(z)(zI − A− tX)−1X(zI − A− tX)−1dz

=

(
1

2πi

∫
γ

f(z)xjk
(z − tj)(z − tk)

dz

)
1≤j,k≤n

=

(
f(tj)− f(tk)

tj − tk
xjk

)
1≤j,k≤n

= D ◦X.

(2.3.50)

Example 2. t 7→ X(t) a smooth path ⊂ H>0
n , then

d

dt
logX(t) =

∫ ∞

0

(X(t) + αI)−1

[
d

dt
X(t)

]
(X(t) + αI)−1dα. (2.3.51)

Proof. We note that the following integral equality holds, then it follows readily by Remark 19.

log t =

∫ ∞

0

(
1

α + 1
− 1

t+ α

)
dα. (2.3.52)

Example 3. t 7→ X(t) a smooth path. Then

d

dt
exp(X(t)) =

∫ ∞

0

exp(αX(t))

[
d

dt
X(t)

]
exp((1− α)X(t))dα. (2.3.53)
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Proof.
d

dt
eX =

d

dt

∞∑
k=0

1

k!
Xk boundedness

=
∞∑
k=0

1

k!

d

dt
Xk

=
∞∑
k=0

1

(1 + k)!

k∑
j=0

Xj dX

dt
Xk−j

=
∞∑
k=0

k∑
j=0

j!(k − j)!

(1 + k)!
· 1

j!(k − j)!
Xj dX

dt
Xk−j

=
∞∑
k=0

k∑
j=0

(∫ 1

0

sj(1− s)k−jds

)
1

j!(k − j)!
Xj dX

dt
Xk−j

=

∫ 1

0

∞∑
k=0

k∑
j=0

1

j!(k − j)!
Xj dX

dt
Xk−jsj(1− s)k−jds

=

∫ 1

0

∞∑
j=0

∞∑
k=j

sj(1− s)k−j

j!(k − j)!
Xj dX

dt
Xk−jds

=

∫ 1

0

exp(sX)
dX

dt
exp((1− s)X)ds.

(2.3.54)

Remark 20. The information encoded in the noncommutative exponential is much more than the com-
mutative case.

Example 4. Let X > 0, ΦX :Mn(C) →Mn(C), ΦX(A) =
∫∞
0
(X + λ)−1A(X + λ)−1dλ. Then we can

write down the inverse of ΦX explicitly:

Φ−1
X (A) =

∫ 1

0

XsAX1−sds. (2.3.55)

Proof. We take A a self-adjoint matrix, then X + tA = exp(log(X + tA))

A =
d

dt
(X + tA)

∣∣∣∣
t=0

=
d

dt
exp(log(X + tA))

∣∣∣∣
t=0

=

∫ 1

0

exp(s log(X + tA))

[
d

dt
log(X + tA)

]
exp((1− s) log(X + tA))ds

∣∣∣∣
t=0

=

∫ 1

0

Xs

[
d

dt
log(X + tA)

]
t=0

X1−sds

=

∫ 1

0

Xs

[∫ ∞

0

(X + λ)−1A(X + λ)−1dλ

]
X1−sds

= Φ−1
X ΦX(A).

(2.3.56)

Similarly, A = d
dt
log(exp(X + tA))t=0 = ΦXΦ

−1
X (A).

With above results about matrix calculus, we are at the position to revisit the matrix geometric mean.
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Example 5. Define ∥A∥2 :=
√

Tr(A∗A) the Hilbert-Schmidt norm. We consider the “generalized length
of curve” ∫ b

a

∥∥∥∥[X(t)]−
1
2

(
d

dt
X(t)

)
[X(t)]−

1
2

∥∥∥∥
2

dt. (2.3.57)

We compute∥∥∥∥[X(t)]−
1
2

(
d

dt
X(t)

)
[X(t)]−

1
2

∥∥∥∥2
2

= Tr
(
X ′X−1X ′X−1

)
= Tr

(
Y ′Y −1Y ′Y −1

)
. (2.3.58)

Here, we take Y (t) = D∗X(t)D with D invertible. Inspired by this, we define:

Definition 2.3.8 (Distance). Let A > 0, B > 0, define

δ(A,B) := min

{∫ 1

0

∥∥∥[X(t)]−
1
2X ′(t)[X(t)]−

1
2

∥∥∥
2
dt : X(0) = A, X(1) = B

}
. (2.3.59)

Here, we say
∥∥∥[X(t)]−

1
2X ′(t)[X(t)]−

1
2

∥∥∥
2

is the speed of X(t) and we can denote

δ(X) =

∫ 1

0

∥∥∥[X(t)]−
1
2X ′(t)[X(t)]−

1
2

∥∥∥
2
dt (2.3.60)

for the simplicity of notation. Then the minimizer of δ(X) i.e. the X such that δ(X) = δ(A,B) is called
the geodesic between A and B.

Proposition 18. If D is invertible, then δ(D∗AD,D∗BD) = δ(A,B). In other words, the distance is
invariant under the congruent action.

Definition 2.3.9. To facilitate the calculation of δ(A,B), we denote

• H(t) := HX(t) = logX(t), then we have X(t) = expH(t), Moreover, according to example 2,
we have

d

dt
H(t) =

∫ ∞

0

(X(t) + λI)−1 d

dt
X(t)(X(t) + λI)−1dλ

=

∫ ∞

0

X(t)
1
2

λ+X(t)
X(t)−

1
2X ′(t)X(t)−

1
2
X(t)

1
2

λ+X(t)
dλ.

(2.3.61)

• In order to calculate
∥∥∥X(t)−

1
2
dX(t)
dt

X(t)−
1
2

∥∥∥
2
, we define

Φ :Mn(C) →Mn(C), Φ(A) =

∫ ∞

0

X(t)
1
2

λ+X(t)
A

X(t)
1
2

λ+X(t)
dλ. (2.3.62)

Remark 21. In fact Φ is a quantum channel since it can be viewed as a “continuous analog” of∑n
j=1 V

†
j (·)Vj , where

∑n
j=1 V

†
j Vj = I . See example 6 below.

Example 6. For s > 0,
∫∞
0

s
(λ+s)2

dλ = 1.

Proposition 19. Tr(Φ(A)) = Tr(A), Φ(A)2 ≤ Φ(A2).
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Proof. example 6 ⇒
∫∞
0

X(t)
λ+X(t)

dλ = I . Therefore,

Tr(Φ(A)) = Tr

(
A

∫ ∞

0

X(t)
1
2

λ+X(t)

X(t)
1
2

λ+X(t)
dλ

)
= Tr(A · I) = Tr(A). (2.3.63)

t2 is operator convex, note that
∫∞
0

(
X(t)

1
2

λ+X(t)

)∗(
X(t)

1
2

λ+X(t)

)
dλ = I , then by the (“continuous version

of ”) noncommutative Jensen’s inequality, we have

Φ(A)2 ≤ Φ(A2). (2.3.64)

Remark 22. These properties can also be seen from the perspetive of quantum channel. That is to say,
we can verify that Φ is 2-positive ⇒ completely positive ⇒ completely positive and trace-preserving
(CPTP).

Example 7 (A lower bound of δ(A,B)). We try to calculate and bound the speed. In fact,

∥H ′(t)∥22 = Tr

[
Φ
(
X− 1

2X ′X− 1
2

)2] by Proposition 19
≤

≤ Tr
[
Φ
(
(X− 1

2X ′X− 1
2 )2
)] by trace preserving

≤ Tr
[
(X−1X ′X−1X ′X−1)2

]
= δ(X)2.

(2.3.65)

Therefore, ∫ 1

0

∥H ′(t)∥2dt ≤ δ(A,B). (2.3.66)

By the triangular inequality of ∥·∥2, we have∥∥∥∥∫ 1

0

H ′(t)dt

∥∥∥∥
2

≤
∫ 1

0

∥H ′(t)∥2dt ≤ δ(A,B). (2.3.67)

In other words,
∥logB − logA∥2 = ∥H(1)−H(0)∥2 ≤ δ(A,B). (2.3.68)

We will see that the minimum can actually be achieved. We begin with the commutative or classical
case.

Proposition 20. A,B > 0, AB = BA, then there exists unique constant-speed geodesic from A to B.

Proof. We take X(t) = A1−tBt, then by A and B commute we have X ′(t) = logB − logA, therefore∥∥∥X− 1
2X ′X− 1

2

∥∥∥
2
=
∥∥∥A− 1

2 (logB − logA)B− 1
2

∥∥∥
2
= ∥logB − logA∥2. (2.3.69)

That is to say X(t) is a constant-speed geodesic from A to B. We assume there exists another constant-
speed geodesic Y (t), then we have∫ 1

0

∥∥∥Y − 1
2Y ′Y − 1

2

∥∥∥
2
dt = ∥logB − logA∥2. (2.3.70)
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Therefore the equality holds in eq. (2.3.67), i.e. for HY (t) = log Y (t) we have∥∥∥∥∫ 1

0

H ′
Y (t)dt

∥∥∥∥
2

=

∫ 1

0

∥H ′
Y (t)∥2dt. (2.3.71)

i.e. (
n∑

j,k=1

∣∣∣∣∫ 1

0

hjk(t)dt

∣∣∣∣2
) 1

2

=

∫ 1

0

(
n∑

j,k=1

|hjk(t)|2
) 1

2

dt (2.3.72)

Here we denote H ′
Y (t) = (hjk(t))

n
j,k=1.

By the equality condition of Cauchy-Schwarz inequality, we have hjk(t) is proportional to hj,k(s) for
any t, s ∈ [0, 1], therefore H ′

Y (t) is a constant matrix, then

HY (t) = t logB + (1− t) logA, (HY (0) = logA, HY (1) = logB). (2.3.73)

Therefore Y (t) = eHY (t) = A1−tBt = X(t).

Theorem 2.3.10. A,B > 0, then there exists a unique constant-speed geodesic from A to B.

X(t) ≡ A
1
2 (A− 1

2BA− 1
2 )tA

1
2 =:M t

0(A,B). (2.3.74)

δ(X) =
∥∥∥logA− 1

2BA− 1
2

∥∥∥
2
. (2.3.75)

Proof. We consider A → B 7→ I → A− 1
2BA− 1

2 , then by I commutes with A− 1
2BA− 1

2 and the previous
Proposition 20, we have

δ(I, A− 1
2BA− 1

2 ) =
∥∥∥logA− 1

2BA− 1
2 − log I

∥∥∥
2
=
∥∥∥logA− 1

2BA− 1
2

∥∥∥
2
. (2.3.76)

Moreover, it is realized using the constant-speed geodesic X̃(t) = (A− 1
2BA− 1

2 )t. By the congruent-
invariant property Proposition 18 we have

δ(A,B) = δ(A
1
2 IA

1
2 , A

1
2 (A− 1

2BA− 1
2 )A

1
2 ) =

∥∥∥logA− 1
2BA− 1

2

∥∥∥
2
, (2.3.77)

which is achieved by X(t) = A
1
2 X̃(t)A

1
2 . By the uniqueness of X̃ we have the uniqueness of X .

Remark 23. This in fact gives another characterization of the geometric mean. That is, we have
M0(A,B) = X(1

2
) where X is the geodesic from A to B. In fact we can generlize this geometric

mean to from M
1
2
0 (A,B) to Mα

0 (A,B), see Definition 2.3.11.
The generalization of the geometric mean to three and more variables case is quite difficult. In fact it

has just been resolved in 2010s.

Definition 2.3.11. Mα
0 (A,B) = A

1
2 (A− 1

2BA− 1
2 )αA

1
2 .

Proposition 21.
[(1− α)A−1 + αB−1]−1 =Mα

0 (A,B) ≤ (1− α)A+ αB. (2.3.78)

Remark 24. This is a very natural generalization of the equality M−1(A,B) ≤M0(A,B) ≤ A+B
2

.

Proof. Let X = A− 1
2BA− 1

2 , recall the classical Young’s inequality, we have

(1− α)s+ αt ≥ s1−αtα. (2.3.79)

Thus we have
[(1− α)I + αX−1]−1 = Xα ≤ (1− α)A+ αX. (2.3.80)

Remark 25. The phylosiphy is, we can usually reduce the problem to the commutative (classical) ase.
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2.4 The Schur product theorem
We define the Schur (or Hadamard) product of two matrices A,B ∈Mn(C) as

A ◦B = (aijbij)
n
i,j=1, (2.4.1)

which is the “entry-wise” product of two matrices.
The following lemma is vital in the proof of the Schur product theorem and many other results.

Basically, it provides a way to reduce this problem to the “tensor product in an extended space”, which
allows us to better understand the essence of the Schur product principle.

Lemma 5. Let A,B ∈Mn(C), {vj}nj=1 being an O.N. basis of Cn, then

A ◦B = V ∗(A⊗B)V, V : C → C⊗ C, vj 7→ vj ⊗ vj, (2.4.2)

where V is a partial isometry. Intuitively, this amounts to consider

A⊗B =

a11B · · · a1nB
... . . . ...

an1B · · · annB

, (2.4.3)

and we only take the (i, j)-entry of each block, i.e. truncate this block matrix using V .

Proof. ⟨V ∗(A⊗B)V vj, vk⟩ = ⟨(A⊗B)(vj⊗vj), V vk⟩ = ⟨Avj⊗Bvj, vk⊗vK⟩ = ⟨Avj, vk⟩⟨Bvj, vk⟩ =
ajkbjk = ⟨(A ◦B)vj, vk⟩.

Theorem 2.4.1 (Schur product theorem). A,B ≥ (>)0, then A ◦B ≥ (>)0.

Proof.
A,B ≥ 0 ⇒ A⊗B ≥ 0 ⇒ V ∗(A⊗B)V ≥ 0 ⇒ A ◦B ≥ 0. (2.4.4)

A ≥ aI,B ≥ bI(a, b > 0) ⇒ A⊗B ≥ abI ⇒ V ∗(A⊗B)V ≥ abV ∗V ⇒ A◦B ≥ abI ◦I > 0. (2.4.5)

Corollary 5. A ◦B is operator monotone with respect to each component.

Proposition 22. Let f be an analytic function with power series expansion

f(z) = c0 + c1z + c2z
2 + · · · (c0 ≥ 0, c1 ≥ 0, · · · ) (2.4.6)

with radius of convergence being R. If A ≥ 0 and |ajk| < R, then [f(ajk)]
n
j,k=1 ≥ 0.

Proof.
[f(aj,k)]

n
j,k=1 = c0(1)

n
j,k=1 + c1A+ c2A ◦ A+ · · ·+ cℓA

◦ℓ + · · · . (2.4.7)

Note that each A◦ℓ(ℓ ≥ 1) is positive by Theorem 2.4.1, and (1)nj,k=1 is a projection thus is positive as
well, we conclude that [f(ajk)]nj,k=1 ≥ 0.

Proposition 23. A1, A2 > 0, B1, B2 ∈Mn(C), then

(B∗
1A

−1
1 B1) ◦ (B∗

2A
−1
2 B2) ≥ (B1 ◦B2)

∗(A1 ◦ A2)
−1(B1 ◦B2). (2.4.8)
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Proof. By Lemma 3 and Theorem 2.4.1 we have(
Ai Bi

B∗
i B∗

iA
−1
i Bi

)
≥ 0 ⇒

(
A1 B1

B∗
1 B∗

1A
−1
1 B1

)
◦
(
A2 B2

B∗
2 B∗

2A
−1
2 B2

)
≥ 0 (2.4.9)

i.e. (
A1 ◦ A2 B1 ◦B2

B∗
1 ◦B∗

2 B∗
1A

−1
1 B1 ◦B∗

2A
−1
2 B2

)
≥ 0. (2.4.10)

Therefore
(B∗

1A
−1
1 B1) ◦ (B∗

2A
−1
2 B2) ≥ (B1 ◦B2)

∗(A1 ◦ A2)
−1(B1 ◦B2). (2.4.11)

Corollary 6. A−1
1 ◦ A−1

2 ≥ (A1 ◦ A2)
−1.

Proposition 24. A1, A2, B1, B2 > 0, then

• M−1(A1, B1) ◦M−1(A2, B2) ≤ 2M−1(A1 ◦ A2, B1 ◦B2);

• M0(A1, B1) ◦M0(A2, B2) ≤M0(A1 ◦ A2, B1 ◦B2).

Proof. We only need to note that[
1

2

(
M−1(A1, B1) M−1(A1, B1)
M−1(A1, B1) M−1(A1, B1)

)]
◦
[
1

2

(
M−1(A2, B2) M−1(A2, B2)
M−1(A2, B2) M−1(A2, B2)

)]
≤
(
A1 ◦ A2

B1 ◦B2

)
(2.4.12)

and (
A1 M0(A1, B1)

M0(A1, B1) B1

)
◦
(

A2 M0(A2, B2)
M0(A2, B2) B2

)
≥ 0, (2.4.13)

and then use the Ando’s variational formula.

Proposition 25 (Ando’s concavity). p, r ∈ [0, 1], p + r ≤ 1, then (A,B) 7→ Ap ◦ Br is jointly concave
on H>0

n ×H>0
n .

Proof. (A,B) 7→ Ap ◦ Br = V ∗(Ap ⊗ Br)V . Then use the Ando’s concavity for tensor product (Theo-
rem 2.3.6).

2.5 The absolute value of operators
We recall the results of polar decomposition

Proposition 26 (Polar decomposition). A ∈Mn(C), then there exists a unitary V and a positive semidef-
inite matrix |A|, s.t. A = V |A|.

Remark 26. The nonzero spectrum of |A| equals to the sqaure root of the nonzero spectrum of AA∗ or
A∗A.

Definition 2.5.1. For A ∈Mn(C), we define ReA = A+A∗

2
and ImA = A−A∗

2i
. Note that ReA and ImA

are both Hermitian.
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Example 8. Let V = ( 0 1
0 0 ), |V | = ( 0 0

0 1 ), ReV = 1
2
( 0 1
1 0 ), |V | ≤ ReV .

Remark 27. This example implies that |V | ≥ ReV does not hold for operator case like in scalar case
in general.

Proposition 27. A ∈Mn(C), then there exists a unitary matrix W such that

ReA ≤ 1

2
(ReA+Re |A|) ≤ W ∗|A|W. (2.5.1)

Proof.
λj(ReA) = max

dimV=j
min
x∈V ∩S

⟨ReAx, x⟩

= maxmin
1

2
(⟨Ax, x⟩+ ⟨Ax, x⟩)

= maxminRe⟨U |A|x, x⟩
≤ maxmin ∥|A|x∥

=

√
λj(|A|2)

= λj(|A|).

(2.5.2)

We decompose ReA = A+ − A− (A+ ≥ 0, A− ≥ 0), |ReA| = A+ + A− ⇒ 1
2
(ReA + |ReA|) = A+.

Therefore, ReA ≤ A+. Moreover, A+ takes only the positive part of the spectrum of ReA. Therefore,
we also have λj(A+) ≤ λj(|A|). We diagonalize A+ and |A| and find

X∗A+X ≤ Y ∗|A|Y ⇒ A+ ≤ (XY ∗)|A|(XY ∗)∗. (2.5.3)

We let W = (XY ∗)∗, then by X, Y are both unitary we have W is unitary. Therefore we proved the right
inequality. For the left inequality, it is trivial since ReA ≤ A+.

Theorem 2.5.2. A,B ∈Mn(C), then there exists U, V unitary matrices, such that

|A+B| ≤ U |A|U∗ + V |B|V ∗. (2.5.4)

Remark 28. Note that this inequality is essentially different from the Weyl inequality for eigenvalues or
sigular values, since the Weyl inequality describes the spectral (local) information while this inequality
describes the operator (global) information. So it is hard to say which one is stronger.

This theorem can be generalized to the von Neumann algebra case.

Proof. By polar decomposition, we have A+B = W |A+B| for W unitary. Therefore

|A+B| = W ∗A+W ∗B. (2.5.5)

We take the real part of both sides, then we have

|A+B| = ReW ∗A+ReW ∗B ≤ U |W ∗A|U∗ + V |W ∗B|V ∗(U, V are unitary) = U |A|U∗ + V |B|V ∗.
(2.5.6)
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2.6 Exercise II
Exercise 7. Suppose A ∈ Mn(C) is Hermitian, U ∈ Mn(C) is unitary and f is a function on Sp(A).
Show that f(UAU∗) = Uf(A)U∗.

Proof. We consider f(z) =
∑∞

k=0 akz
k, then we have

f(A) =
∞∑
k=0

akA
k, f(UAU∗) =

∞∑
k=0

akUA
kU∗ = U

∞∑
k=0

akA
kU∗ = Uf(A)U∗. (2.6.1)

Exercise 8. Suppose A ∈Mn(C) is and f is a function on Sp(A∗A). Show that

Af(A∗A) = f(AA∗)A. (2.6.2)

Proof. We consider the polar decomposition A = U |A| with U being a unitary matrix. Then we have

A∗A = |A|U∗U |A| = |A|2, AA∗ = U |A||A|U∗ = U |A|2U∗, (2.6.3)

therefore

LHS = U |A|f(|A|2), RHS = f(U |A|2U∗)U |A| = Uf(|A|2)U∗U |A| = U |A|f(|A|2) = LHS.
(2.6.4)

Exercise 9. Consider the α-log function f :

f(t) :=
t1−α − 1

1− α
, t ∈ (0,∞), α > 0, α ̸= 1. (2.6.5)

Determine for which α, the function f is operator monotone or operator convex.

Proof. Since for α ∈ (1, 2], we have 1−α ∈ [−1, 0) and for α ∈ [0, 1), 1−α ∈ (0, 1], by Theorem 2.1.2,
we have f is operator monotone for α ∈ (1, 2] and −f is operator monotone for α ∈ [0, 1).

Similarly, by Theorem 2.1.5, we have f is operator convex for α ∈ [−1, 0], −f is operator convex for
α ∈ [0, 1), and f is operator convex for α ∈ (1, 2].

Exercise 10. Show that the function f(t) = tan t is operator monotone on (−π/2, π/2).

Proof. By the polar expansion of tan t we have

tan t =
∞∑

n=−∞

{
1

(n− 1
2
)π − t

− nπ

n2π + 1

}
, t ∈ (−π/2, π/2). (2.6.6)

Then it follows by the operator monotonicity of t−1.

Exercise 11. Show that

f(t) = −t log t+ (t+ 1) log(t+ 1), t ∈ [0,∞) (2.6.7)

is operator monotone.
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Proof. In fact,

f(t) =

∫ 1

0

[1 + log(t+ α)]dα. (2.6.8)

Since log t is operator monotone on [0,∞) and t ∈ [0,∞], we have f(t) is also operator monotone.

Exercise 12. Show that f(t) =
√
t2 + 1 is not operator monotone on [0,∞).

Proof. We consider A =

(
3
2

3
4

)
, B =

(
1
2

1
2

1
2

1
2

)
. Then we have

f(A) =

(√
13
2

5
4

)
, f(B) =

(
2+

√
2

2
2−

√
2

2
2−

√
2

2
2+

√
2

2

)
. (2.6.9)

We have det(f(A)− f(B)) < 0, which means that f is not operator monotone.

Exercise 13. Suppose that A,B ∈Mn(C) are positive definite matrices, show that

(A logA+B logB)(A+B)−1(A logA+B logB) ≤ A(logA)2 +B(logB)2. (2.6.10)

Hint: Apply the noncommutative Jensen Inequality.

Proof. Since A,B > 0, we can define

VA := A1/2(A+B)−1/2, VB := B1/2(A+B)−1/2. (2.6.11)

Then we have

V ∗
AVA + V ∗

BVB = (A+B)−1/2A(A+B)−1/2 + (A+B)−1/2B(A+B)−1/2 = I. (2.6.12)

Note that f(t) = t2 is operator convex, we apply noncommutative Jensen inequality, obtaining

(V ∗
A logAVA + V ∗

B logBVB)
2 ≤ V ∗

A(logA)
2VA + V ∗

B(logB)2VB. (2.6.13)

We compute

LHS = [(A+B)−1/2(A1/2(logA)A1/2B1/2(logB)B1/2)(A+B)−1/2]2

= X−1(A logA+B logB)(A+B)−1(A logA+B logB)X−1
(2.6.14)

RHS = (A+B)−1/2A1/2(logA)2A1/2(A+B)−1 + (A+B)−1/2B1/2(logB)2B1/2(A+B)−1

= X−1(A(logA)2 +B(logB)2)X−1.
(2.6.15)

Here, we denote X := (A+B)−1/2. It follows readily that

(A logA+B logB)(A+B)−1(A logA+B logB) ≤ A(logA)2 +B(logB)2. (2.6.16)

Exercise 14. Suppose that t1, · · · , tn ∈ R. Show that (cos(tj − tk))1≤j,k≤n is positive semidefinite.
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Proof. In fact this matrix is a Gram matrix with respect to the set {x1, · · · ,xn} of vectors where

xi =

(
cos ti
sin ti

)
. (2.6.17)

Then we have
⟨xi,xj⟩ = cos ti cos tj + sin ti sin tj = cos(ti − tj). (2.6.18)

That is to say,

A := (cos(ti − tj))1≤i,j≤n = (⟨xi,xj⟩)1≤i,j≤n, i.e. A = (xi)
∗
1≤i≤n(xi)1≤i≤n ≥ 0. (2.6.19)

Exercise 15. Suppose A ∈Mn(C) is a contraction i.e. ∥A∥ ≤ 1, show that for any n ∈ N,
I A∗ · · · A∗m

A
. . . . . . ...

... . . . . . . A∗

Am · · · A I

 ≥ 0. (2.6.20)

Proof. We assume further that A is normal, then we can let {uj}nj=1 be a set of orthonormal basis of Cn

that diagonalizes A:

A =
n∑
j=1

λjuju
∗
j , A∗ =

n∑
j=1

λjuju
∗
j . (2.6.21)

Since ∥A∥ ≤ 1, we have |λj| ≤ 1. We compute
I A∗ · · · A∗m

A
. . . . . . ...

... . . . . . . A∗

Am · · · A I

 =
n∑
j=1

Mn(λj)⊗ uju
∗
j . (2.6.22)

Here we denote

Mm(λj) =


1 λj · · · λj

m

λj
. . . . . . ...

... . . . . . . λj
λmj · · · λj 1

 ∈Mm(C). (2.6.23)

Note that
detMm(λj) = (1− |λj|2)m−1 ≥ 0, ∀m ∈ N. (2.6.24)

Therefore, by Sylvester’s criterion and |λj| ≤ 1, we have Mn(λj) is positive semidefinite. It follows that
Mn(λj)⊗ uju

∗
j and then the whole matrix is positive semidefinite.

In fact, for general case, let S be the matrix above and let

T =


0 · · · · · · 0

A
. . . . . . ...

... . . . . . . ...
0 · · · A 0

. (2.6.25)
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We have

S = I + T + · · ·+ Tm + T ∗ + · · ·+ T ∗m = (I − T )−1 + (I − T ∗)−1 − I. (2.6.26)

Now we see that for any v ∈ Cnm,

⟨Sv, v⟩ = ⟨(I − T )−1v, v⟩+ ⟨(I − T ∗)−1v, v⟩ − ⟨v, v⟩
= ⟨w, (1− T )w⟩+ ⟨(1− T )w,w⟩ − ⟨(1− T )w, (1− T )w⟩
= ∥w∥2 − ∥Tw∥2 ≥ 0.

(2.6.27)

Here we denote w = (I − T )−1v. This indicates that S ≥ 0.

Exercise 16. Show that the map A 7→ A−1 ⊗ A−1 is operator convex on H>0
n .

Proof. Suppose that A1, A2 > 0, we need to show that(
A1 + A2

2

)−1

⊗
(
A1 + A2

2

)−1

≤ A−1
1 ⊗ A−1

1

2
+
A−1

2 ⊗ A−1
2

2
. (2.6.28)

We multiply A
1
2
1 ⊗ A

1
2
1 on left and right sides of both sides of the inequality, we have(

I + A
− 1

2
1 A2A

− 1
2

1

2

)−1

⊗

(
I + A

− 1
2

1 A2A
− 1

2
1

2

)−1

≤ I

2
+
A

1
2
1A

−1
2 A

1
2
1 ⊗ A

1
2
1A

−1
2 A

1
2
1

2
. (2.6.29)

Let X = A
1
2
1A

−1
2 A

1
2
1 and let us consider the spectral decomposition of X , then it suffices to show that for

x, y > 0, we have (
1 + x−1

2

)−1(
1 + y−1

2

)
≤ 1 + xy

2
. (2.6.30)

This is a simple inequality, we can compute directly.
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Chapter 3

Trace Inequalities

3.1 The Hilbert-Schmidt inner product
Definition 3.1.1. We define the (trace) p-functional as

∥A∥p := Tr
[
(A∗A)p/2

]1/p
= Tr(|A|p)1/p. (3.1.1)

We note that in terms of singular values, we have in fact

∥A∥p =

(
n∑
j=1

σj(A)
p

)1/p

, σj(A) =
√
λj(A∗A). (3.1.2)

From this, we can easily see that

∥A∥p ≥ ∥A∥, and lim
p→∞

∥A∥p = ∥A∥. (3.1.3)

Definition 3.1.2. • (Hilbert-Schmidt inner product) For A,B ∈ Mn(C), we define the Hilbert-
Schmidt inner product as (“mathematician’s notation”)

⟨A,B⟩ = Tr(B∗A). (3.1.4)

• Let ρ be a linear functional on Mn(C), we say ρ is positive if ρ(A) ≥ 0 for all A ≥ 0.

• If a positive linear functional ρ satisfies ρ(I) = 1, we say ρ is a state.

• (density matrix) For any ρ a linear functional, by Riesz representation theorem applying to the H-S
inner product space, there exists a unique Dρ ∈Mn(C) such that ρ(A) = Tr(DρA). If ρ is a state,
we have Dρ ≥ 0, TrDρ = 1. In this case, we say Dρ is the density matrix of ρ.

Proposition 28.
|Tr(BA)| ≤ ∥A∥∥B∥1. (3.1.5)

Proof.
|Tr(BA)| = |Tr(V |B|A)| = |Tr(|B|AV )| = Tr

(
|B|AV eiθ

)
=

1

2

[
|B|(AV eiθ + (AV eiθ)∗)

]
≤ Tr

(
|B|

1
2∥A∥|B|

1
2

)
= Tr(|B|)∥A∥ = ∥A∥∥B∥1.

(3.1.6)

45
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Example 9 (Skew information). • ρ state, Dρ density matrix, we define

I(ρ,X) =
1

2
Tr
(
[D

1
2
ρ , X]∗[D

1
2
ρ , X]

)
= Tr

(
X∗X +XX∗

2
Dρ

)
− Tr

(
X∗D

1
2
ρXD

1
2
ρ

)
, (3.1.7)

J(ρ,X) =
1

2
Tr
(
{D

1
2
ρ , X}∗{D

1
2
ρ , X}

)
= Tr

(
X∗X +XX∗

2
Dρ

)
+ Tr

(
X∗D

1
2
ρXD

1
2
ρ

)
. (3.1.8)

We say that I(ρ,X) is the skew information of the state ρ with respect to X . Sometimes we assume
that X is self-adjoint, i.e. X = X∗. In this case, we can see that the first term is actually the
variance of the observable X .

• By Cauchy-Schwarz inequality, we have

Tr
(
[D

1
2
ρ , X]∗{D

1
2
ρ , Y }

)
≤ 2
√
I(ρ,X)J(ρ, Y ). (3.1.9)

L.H.S. =
∣∣∣Tr(X∗DρY ) + Tr

(
X∗D

1
2
ρ Y D

1
2
ρ

)
− Tr

(
D

1
2
ρX

∗D
1
2
ρ Y
)
− Tr

(
D

1
2
ρX

∗Y D
1
2
ρ Y
)∣∣∣

= |Tr[(Y X∗ −X∗Y )Dρ]| = |ρ[X∗, Y ]|. ⇒ I(ρ,X)J(ρ, Y ) ≥ 1

4
|ρ[X∗, Y ]|2.

(3.1.10)

• For the purpose of simplifying the notations, we denote

C(ρ,X) = Tr
(
X∗D

1
2
ρXD

1
2
ρ

)
. (3.1.11)

Then we have

Varρ(X)Varρ(Y )− C(ρ,X)C(ρ, Y )

=
1

4
(I(ρ,X) + J(ρ, Y ))(I(ρ, Y ) + J(ρ, Y ))− 1

4
(I(ρ,X)− J(ρ,X))(I(ρ,X)− J(ρ,X))

=
1

2
I(ρ,X)J(ρ, Y ) +

1

2
I(ρ, Y )J(ρ,X)

≥ 1

4
|ρ[X∗, Y ∗]|2.

(3.1.12)
We say this inequality is the Heisenberg uncertainty relation.

3.2 Trace monotonicity
In this section, we ask the following general question:

Can we derive the trace inequalities related to monotonic functions?

Quite intuitively, we have the following simple result:

Proposition 29. Let f : Dom(f) → R be a non-decreasing function on some interval Dom(f). If A,B
Hermitian matrices such that A ≤ B and Sp(A), Sp(B) ⊂ Dom(f), then Tr f(A) ≤ Tr f(B).
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Proof. By A ≤ B and the min-max theorem, we have λj(A) ≤ λj(B) for all j and thus f(λj(A)) ≤
f(λj(B)) for all j. Therefore, we have

Tr f(A) =
n∑
j=1

f(λj(A)) ≤
n∑
j=1

f(λj(B)) = Tr f(B). (3.2.1)

In fact, we can derive a more refined result. We first examine the behavior of the differential of Tr f
function.

Theorem 3.2.1. Let f be a C1 function, A is a Hermitian matrix with Sp(A) ⊂ Dom(f) with Dom(f)
being an open interval, then we have

d

dt
Tr f(A+ tX)

∣∣∣∣
t=0

= Tr(f ′(A)X). (3.2.2)

Proof. Let m ∈ N, f(t) = tm, then we have

d

dt
Tr f(A+ tX) =

n∑
j=1

Tr

[
(A+ tX)j−1 d

dt
(A+ tX)

]
= Tr

(
X(A+ tX)m−1 + · · ·+ (A+ tX)m−1X

)
= Tr

[
m(A+ tX)m−1X

]
(by the cyclic property of trace)

= Tr(f ′(A)X).

(3.2.3)

Therefore, for f ∈ C[x], the conclusion holds. If f is C1, the conclusion also holds since we can always
approximate f by a polynomical function on a compact set.

Remark 29. In fact, if additionally assume that f is C1, we can derive Proposition 29 using Theo-
rem 3.2.1. In fact, we can define

h(t) := f(tA+ (1− t)B), (3.2.4)

then we have
d

dt
h(t) = Tr(f ′(tA+ (1− t)B)(A−B)) ≤ 0, ∀t ∈ [0, 1]. (3.2.5)

This is because f is increasing and f ′ is a positive-valued function. Moreover, A ≤ B ⇒ A − B ≤ 0.
Therefore d

dt
h(t) ≤ 0. Thus we have

Tr(f(A))− Tr(f(B)) = h(1)− h(0) =

∫ 1

0

d

dt
h(t)dt ≤ 0. (3.2.6)

Remark 30. Unfortunately, this result does not hold if we extend the trace to general state. That is to
say, in general we do not have

Tr(X∗f(A)X) ≤ Tr(X∗f(B)X), ∀X ∈Mn(C). (3.2.7)

Example 10. If 0 ≤ A ≤ B, then Tr(Ap) ≤ Tr(Bp) (p > 0).
If A ≤ B, then Tr

(
eA
)
≤ Tr

(
eB
)
.

We can see that the “trace monoticity” is easier to realize than the operator monoticity.
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3.3 Jensen trace inequality

Recall the operator convexity. The operator convexity in fact implies C2, which is much stronger than
the generic convexity. It is natural for us to ask whether we can derive some trace ineqaulities for general
convex functions. The answer is yes, and this is the Jensen trace inequality.

In fact, the trace inqualities related to convexity can be formulated in various ways. We begin with a
simple result called Peierls inequality:

Proposition 30 (Peierls inequality). f is a convex function, A is Hermitian, Sp(A) ⊂ Dom(f) and
{vj}nj=1 is a set of orthonormal basis of Cn, then we have

n∑
j=1

f(⟨Avj, vj⟩) ≤ Tr f(A). (3.3.1)

Proof.

RHS =
n∑
j=1

⟨f(A)vj, vj⟩. (3.3.2)

We take the spectral decomposition of A, here Pk are orthogonal projection operators:

A =
m∑
k=1

λkPk,
m∑
k=1

Pk = I. (3.3.3)

Therefore

RHS =
n∑
j=1

m∑
k=1

f(λk)∥Pkvj∥2. (3.3.4)

Note that
∑m

k=1 ∥Pkvj∥
2 = ∥vj∥2 = 1, by the convexity of f , we have

n∑
j=1

m∑
k=1

f(λk)∥Pkvj∥2 ≥
n∑
j=1

f

(
m∑
k=1

λk∥Pkvj∥2
)

=
n∑
j=1

f(⟨Avj, vj⟩). (3.3.5)

Unlike the case for monoticity, for the convexity we can examine the behavior of Tr(X∗f(A)X). In
fact, we only need to modify a little bit the proof of Proposition 30 to obtain the following result:

Proposition 31. Let f be a convex function, A is Hermitian, Sp(A) ⊂ Dom(f) and {vj}nj=1 is a set of
orthonormal basis of Cn. Assume X ∈Mn(C) and ∥X∥ ≤ 1, then we have

n∑
j=1

∥Xvj∥2f

(
⟨AXvj, Xvj⟩

∥Xvj∥2

)
≤ Tr(X∗f(A)X). (3.3.6)
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Proof.

Tr[X∗f(A)X] =
n∑
j=1

m∑
k=1

f(λk)∥PkXvj∥2 =
n∑
j=1

∥Xvj∥2
m∑
k=1

f(λk)
∥PkXvj∥2

∥Xvj∥2

≥
n∑
j=1

∥Xvj∥2f

(
m∑
k=1

λk
∥PkXvj∥2

∥Xvj∥2

)

=
n∑
j=1

∥Xvj∥2f

(
⟨AXvj, Xvj⟩

∥Xvj∥2

)
.

(3.3.7)

We can also extend this result for general vector. The idea is to supplement the remaining part for
∥v∥ ≤ 1.

Proposition 32. f is a convex function, 0 ∈ Dom(f), f(0) ≤ 0. A Hermitian, v ∈ Cn with ∥v∥ ≤ 1,
then

f(⟨Av, v⟩) ≤ ⟨f(A)v, v⟩. (3.3.8)

Proof.

⟨f(A)v, v⟩ =
n∑
j=1

f(λk)∥Pkv∥2 + f(0)[1− ∥v∥2]− f(0)[1− ∥v∥2]

≥ f

(
m∑
k=1

λk∥Pkv∥2
)

− f(0)[1− ∥v∥2]

= f(⟨Av, v⟩).

(3.3.9)

We next derive three important results. These results can be viewed as the application of Proposi-
tion 30, Proposition 31 and Proposition 32 by taking trace.

Proposition 33. f is a convex function, A,B Hermitian, λ ∈ [0, 1], then we have

Tr f(λA+ (1− λ)B) ≤ λTr f(A) + (1− λ) Tr f(B). (3.3.10)

Proof. We take vj as the eigenvectors of λA+ (1− λ)B, then we have

Tr f(λA+ (1− λ)B) =
n∑
j=1

⟨f [(1− λ)B + λA]vj, vj⟩

spectral decomposition
=

n∑
j=1

f(⟨λA+ (1− λ)Bvj, vj⟩)

the convexity of f
≤

n∑
j=1

λf(⟨Avj, vj⟩) + (1− λ)f(⟨Bvj, vj⟩)

Peierls (Proposition 30)
≤ λTr f(A) + (1− λ) Tr f(B).

(3.3.11)
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Remark 31. We use two different convexity: (1) the trivial convexity of f ; (2) the Peierls convexity of
f . In fact, Proposition 33 implies that the function A 7→ Tr f(A) is operator convex if f is a convex
function.

Corollary 7.

Tr

(
A+B

2

)p
≤ TrAp + TrBp

2
, (3.3.12)

Tr e
A+B

2 ≤ Tr eA + Tr eB

2
. (3.3.13)

Next we apply Proposition 31 to obtain the following Jensen trace inequality. It is formulated in the
way similar to the operator Jensen inequality Theorem 2.2.1.

Theorem 3.3.1 (Jensen trace inequality). Let f be a convex function, Aj are Hermitian, Vj ∈ Mn(C),∑m
j=1 V

∗
j Vj = 1, then we have

Tr f

(
m∑
j=1

V ∗
j AjVj

)
≤

m∑
j=1

Tr
(
V ∗
j f(Aj)Vj

)
. (3.3.14)

Proof. The proof is also similar to Theorem 2.2.1. We take

X =


V1 0 · · · 0
V2 0 · · · 0
...

... . . . ...
Vm 0 · · · 0

 ∈Mmn(C), Ã =

A1 − x0I
. . .

Am − x0I

 ∈Mmn(C). (3.3.15)

Let f̃(x) = f(x+ x0)− f(x0) for x0 ∈ Dom(f), then we have f̃ is a convex function. We compute

X∗ÃX =

(
(
∑m

j=1 V
∗
j AjVj)n×n

0

)
∈Mmn(C). (3.3.16)

We take the basis vectors with respect to the block matrix, i.e. {vj}mnj=1, then we have

∥Xej∥2 =

〈
V1 0 · · · 0
V2 0 · · · 0
...

... . . . ...
Vm 0 · · · 0


∗

V1 0 · · · 0
V2 0 · · · 0
...

... . . . ...
Vm 0 · · · 0

ej, ej
〉

=

〈
∑m

j=1 V
∗
j AjVj 0 · · · 0

...
... . . . ...

0 0 · · · 0

ej, ej〉

=

〈I 0 · · · 0
...

... . . . ...
0 0 · · · 0

ej, ej〉 =

{
1, 1 ≤ j ≤ n,

0, otherwise.

(3.3.17)

Therefore
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• Tr
(
X∗f(Ã)X

)
= Tr

(∑m
j=1 V

∗
j f̃(Aj −X0)Vj

)
= Tr

(∑m
j=1 V

∗
j f(Aj)Vj − x0

)
.

•
∑mn

k=1 ∥Xek∥
2f
(

⟨X∗ÃXek,ek⟩
∥Xek∥2

)
=
∑n

k=1 f(⟨X∗ÃXek, ek⟩) =
∑n

k=1 f(⟨
∑m

j=1 V
∗
j (Aj−x0I)Vjek, ek⟩)

= Tr f(
∑m

j=1 V
∗
j AVj − x0).

Proposition 34. f convex, 0 ∈ Dom(f), f(0) ≤ 0, {Aj} Hermitian, V1, · · · , Vm ∈Mn(C),
∑m

j=1 V
∗
j Vj ≤

I , then we have

Tr f

(
m∑
j=1

V ∗
j AjVj

)
≤

m∑
j=1

Tr
(
V ∗
j f(Aj)Vj

)
. (3.3.18)

Proof. Let vk be the eigenvectors of X∗AX for some ∥X∥ ≤ 1, then we have

Tr f(X∗AX)
spectral decomposition

=
n∑
k=1

f(⟨X∗AXvk, vk⟩)

=
n∑
k=1

f(⟨AXvk, Xvk⟩)
Proposition 32

≤
n∑
k=1

⟨f(A)Xvk, Xvk⟩ = Tr(X∗f(A)X).

(3.3.19)

For general case, we can use the techniques of block matrices.

In the next two propositions, we will see that if we additionally assume that f is increasing, we can
derive even nicer results. The first one Proposition 35 in some sense achieves f(X∗AX) ≤ X∗f(A)X
up to a unitary matrix and avoids taking the trace. The second one Proposition 36 is a majorization result.
It has a deep connection with the Gibbs state at different temperatures.

Proposition 35. f is a convex and increasing function, f(0) ≤ 0 and X ∈Mn(C), then there exists U a
unitary matrix, such that f(X∗AX) ≤ U∗X∗f(A)XU .

Proof. Since we want to derive the inequality up to unitary matrix, we can estimate the eigenvalues of
X∗f(A)X . In fact,

λk(X
∗f(A)X) = min

dimV=k−1
max

∥v∥=1,v∈V
⟨X∗f(A)Xv, v⟩

Proposition 32
≥ min

dimV=k−1
max

∥v∥=1,v∈V
f(⟨AXv,Xv⟩)

monoticity
= min

dimV=k−1
f( max

∥v∥=1,v∈V
⟨X∗AXv, v⟩)

mean-max again
≥ min

dimV=k−1
f(λk(X

∗AX))

= f(λk(X
∗AX))

monoticity again
= λk(f(X

∗AX)).

(3.3.20)

Therefore, there exists a unitary matrix U such that f(X∗AX) ≤ U∗X∗f(A)XU .

Proposition 36. f is increasing and convex function, f : [0,∞) → [0,∞), A ≥ 0 and TrA = 1, then
we have

f(A)

Tr f(A)
⪰ A. (3.3.21)

Here the notation ⪰ denotes majorization.
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Proof. Note that for 0 ≤ a ≤ b ̸= 0 we have

f(b)a− f(a)b = f(b)a− f
(
0 ·
(
1− a

b

)
+ b · a

b

)
b ≥ f(b)a− a

b
· f(b)b = 0. (3.3.22)

Therefore, we have
f(λj)λk ≥ λjf(λk), for j ≤ k. (3.3.23)

Therefore

[f(λ1) + · · ·+ f(λl)](λl+1 + · · ·+ λn) ≥ (λ1 + · · ·+ λl)[f(λl+1) + · · ·+ f(λn)]. (3.3.24)

We add (λ1 + · · ·+ λl)[f(λl+1) + · · ·+ f(λn)] to both sides, we have

[f(λ1) + · · ·+ f(λl)] TrA ≥ (λ1 + · · ·+ λl) Tr f(A). (3.3.25)

Therefore
f(λ1) + · · ·+ f(λl)

Tr f(A)
≥ λ1 + · · ·+ λl, ∀1 ≤ l ≤ n. (3.3.26)

Therefore f(A)
Tr f(A)

majorizes A.

Remark 32. For two Gibbs states with different temperatures, we have

e−βH

Tr(e−βH)
⪯ e−β

′H

Tr(e−β′H)
, ∀β ≤ β′. (3.3.27)

This is because tβ
′/β is convex for β′/β ≥ 1.

3.4 Klein inequality and relative entropy
Theorem 3.4.1. Let f be a C1 and convex function, A,B are Hermitian matrices, then

Tr((A−B)f ′(B)) ≤ Tr(f(A)− f(B)) ≤ Tr((A−B)f ′(A)). (3.4.1)

Proof. Let h(t) = Tr f(A+ t(B − A)), then we have h(0) = Tr f(A), h(1) = Tr f(B).
By the Jensen trace inequality we have A 7→ Tr f(A) is a convex map, therefore h(t) is a convex

function. Thus

h(t) ≤ th(1) + (1− t)h(0) ⇒ h(1)− h(0)

1− 0
≥ h(t)− h(0)

t− 0
, ∀t ∈ [0, 1]. (3.4.2)

Therefore, by taking the limit t→ 0, we have

h′(0) ≤ h(1)− h(0) ⇒ Tr[f ′(A)(B − A)] ≤ Tr(f(B)− f(A)). (3.4.3)

Definition 3.4.2 (Relative entropy). A,B are two density matrices, PRange(B) ≤ PRange(A), then we
define the relative entropy as

H(B||A) = Tr(B logB −B logA). (3.4.4)

We define the entropy of a density matrix A as

H(A) = −Tr(A logA). (3.4.5)

Note that 0 is just a first-order pole of log x at 0. Therefore H(A) is well-defined even if A is singular.
Also, we know that t log t is an operator convex function, therefore (·) is an operator concave mapping.
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From the definition of relative entropy, we can easily find that

Proposition 37. H(B||A) ≥ 0.

Proof. f(t) = t log t is convex, therefore Tr(A logA−B logB) ≤ Tr((A−B) logA).

In fact, we can show a stronger result. In fact, the Klein inequality is a first-order Taylor expansion
of f . We can in fact use the information of the second order derivative of f(x) = x log x to derive the
following result, which is closely related to the trace distance.

In fact, we have the following result:

Theorem 3.4.3. fk, gk are functions on (a, b), λk ∈ R. If
∑m

k=1 λkfk(x)gk(y) ≥ 0 for any x, y ∈ (a, b).
Then for A,B Hermtian with Sp(A), Sp(B) ⊂ (a, b), we have

m∑
k=1

λk Tr(fk(A)gk(B)) ≥ 0. (3.4.6)

Proof. We apply the spectral decomposition of A and B:

A =
m′∑
j=1

ajPj, B =
m′′∑
k=1

bkQk,
m′∑
j=1

Pj = I,
m′′∑
l=1

Ql = I. (3.4.7)

Therefore, by functional calculus via spectral decomposition, we have

m∑
k=1

λk Tr(fk(A)gk(B)) =
∑
kjl

λkfk(aj)gk(bl) Tr(PjQl) =
∑
j,l

(∑
k

λkfk(aj)gk(bl)

)
Tr(PjQl) ≥ 0.

(3.4.8)

Example 11. For f(x) = x log x, we have

−f(x) + f(y) + (x− y)f ′(y) = −1

2
(x− y)f ′′(x0) ≥ −1

2
(x− y)2, x, y ∈ (0, 1). (3.4.9)

Here we use that f ′(x) = 1 + log x and f ′′(x) = 1
x
> 1 for x ∈ (0, 1).

Therefore, by Theorem 3.4.3, we have

Tr(B logB −B logA) ≥ 1

2
Tr
(
(A−B)2

)
. (3.4.10)

Therefore

H(B||A) ≥ 1

2
Tr
(
(A−B)2

)
=

1

2
∥B − A∥22. (3.4.11)

Remark 33. If H(B||A) = 0, we can easily see that A = B. However, this is not that obvious if we only
know Proposition 37.
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Example 12 (Lieb’s convexity). We claim that

A,B 7→ Tr(X∗ApXBr) (3.4.12)

is jointly concave for 0 ≤ p, r ≤ 1, p+ r ≤ 1.
We recall the Ando’s concavity, we have (A,B) 7→ Ap ⊗Br is jointly concave.
We take

E =
n∑

j,k=1

Ejk ⊗ Ejk. (3.4.13)

Then we can verify That

Tr(X∗ApXBr) =
1

n
Tr
(
E(X∗ ⊗ I)(Ap ⊗ (BT )q)(X ⊗ I)E

)
. (3.4.14)

By Ando’s concavity, we have A,B 7→ Tr(X∗ApXBr) is jointly concave.

Theorem 3.4.4. The map (A,B) 7→ H(B||A) is jointly convex on the set

{(A,B) : PRange(B) ≤ PRange(A), A,B are density matrices}. (3.4.15)

Proof. Let

f(p) = Tr
(
(λA1 + (1− λ)A2)

p (λB1 + (1− λ)B2)
1−p)− λTr

(
Ap1B

1−p
1

)
− (1− λ) Tr

(
Ap2B

1−p
2

)
.

(3.4.16)
Here, A1, A2, B1, B2 ∈ H>0

n and p, λ ∈ [0, 1].
By Lieb’s concavity, we have f(p) ≥ 0. Therefore f ′(0) ≥ 0 since f(0) = 0. This implies that

Tr ((λB1 + (1− λ)B2) log (λA1 + (1− λ)A2))− Tr ((λB1 + (1− λ)B2) log (λB1 + (1− λ)B2))

≥λ (Tr (B1 logA1)− Tr (B1 logB1)) + (1− λ) (Tr (B2 logA2)− Tr (B2 logB2))
(3.4.17)

Here we note that Tr ensures the commutative property when taking derivatives, thus f ′(0) can be com-
puted using the similar way as in the classical case.

This indicates that H(B||A) is jointly convex on invertible density matrices. For general case, we can
approximate H(B||A) by invertible density matrices to see that it is still jointly convex.

3.5 Peierls-Bogoliubov inequality and Gibbs variational principle

Next we want to explore the variational formula for relative entropy. In fact, these results are usu-
ally called (quantum) Gibbs variational principle. To prove these formulas, we first present the Peierls-
Bogoliubov inequality

Theorem 3.5.1 (Peierls-Bogoliubov). A,B are Hermitian, λ ∈ [0, 1], then we have

log Tr eλA+(1−λ)B ≤ λ log Tr eA + (1− λ) log Tr eB. (3.5.1)
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Proof. We use the similar technique like our proof of Tr f is convex (see Proposition 33). We take vj as
the normal eigenvectors of λA+ (1− λ)B, then by spectral decomposition, we have

log
∑
j

⟨eλA+(1−λ)Bvj, vj⟩ = log

(∑
j

e⟨[λA+(1−λB)]vj ,vj⟩

)
= log

∑
j

eλ⟨Avj ,vj⟩+(1−λ)⟨Bvj ,vj⟩. (3.5.2)

We should note that at this point we cannot directly apply the Peierls inequality Proposition 30 be-
cause the λ term and (1−λ) term are not yet separated. However, we can use the convexity of log

∑
j e

xj

to separate them. In fact, we can define

ψ : Rn → R, ψ(x) = log
n∑
j=1

exj , xj ∈ R. (3.5.3)

We can see that ψ is a convex function by calculating the Hessian matrix. In fact, through a tedious but
straightforward calculation, we can show that the Hessian matrix of ψ is given by

Hψ(x) = (hjk)
n
j,k=1, hjk = tjδjk − tjtk, tj =

exj∑n
l=1 e

xl
. (3.5.4)

We can verify that Hψ(x) is positive semidefinite. Therefore, we can apply the convexity of ψ to separate
the λ and (1− λ) terms. We take x = (⟨Avj, vj⟩)nj=1, y = (⟨Bvj, vj⟩)nj=1, then

log
∑
j

eλ⟨Avj ,vj⟩+(1−λ)⟨Bvj ,vj⟩ = ψ(λx+ (1− λ)y)

≤ λψ(x) + (1− λ)ψ(y)

= λ log
∑
j

e⟨Avj ,vj⟩ + (1− λ) log
∑
j

e⟨Bvj ,vj⟩

Peierls Proposition 30
≤ λ log Tr eA + (1− λ) log Tr eB.

(3.5.5)

Remark 34. In this proof, we use to different convexity just like Proposition 33. The first one is the trivial
convexity of log

∑
j e

xj , and the second one is the Peierls convexity.
We can also state Peierls-Bogoliubov inequality using logarithmic convexity, i.e.

Tr
(
eλA+(1−λB)

)
≤ Tr

(
eA
)1−λ

Tr
(
eB
)λ
. (3.5.6)

Next we want to derive the variational formula for relative entropy. We first give a quick corollary of
Theorem 3.5.1, which actually finds a lower bound of log eTrA − log eTrB.

Proposition 38. Let A,B be Hermitian matrices, Then

log
Tr eA+B

Tr eB
≥

Tr
(
eBA

)
Tr eB

. (3.5.7)

Proof. Let
h(t) = log Tr etA+(1−t)B, t ∈ [0, 1]. (3.5.8)
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Then h(1) = log Tr eA and h(0) = log Tr eB. By Theorem 3.5.1, we have A 7→ log Tr eA is operator
convex. Therefore, we have h(t) is convex. Thus we have

h(1)− h(0)

1− 0
≥ h(t)− h(0)

t− 0
, ∀t ∈ [0, 1]. (3.5.9)

LHS = logTr eA − log Tr eB. (3.5.10)

To calculate the right-hand side, we only need to calculate the derivative of h(t). In fact we should again
take the advantage of the trace in the sense that the part inside the trace is commutative. Therefore, we
have

h′(t) =
d
dt
Tr
(
etA+(1−t)B)

Tr etA+(1−t)B =
Tr
(
etA+(1−t)B(A−B)

)
Tr etA+(1−t)B . (3.5.11)

Therefore

lim
t→0+

RHS = lim
t→0+

Tr
(
eB(A−B)

)
Tr eB

. (3.5.12)

Therefore we have

log Tr eA − log Tr eB ≥
Tr
(
eB(A−B)

)
Tr eB

. (3.5.13)

Replacing A by A+B, we yield the desired result.

Theorem 3.5.2 (Gibbs variational principle). Let X be a Hermitian matrix, then

log Tr eX = sup
D density matrix

{Tr(XD) +H(D)}. (3.5.14)

Proof. We take B = logD, A = X for any density matrix D and Hermitian matrix X , then by Proposi-
tion 38 we have

log Tr eX ≥ Tr(D(X − logD))

Tr elogD
= Tr(XD)− Tr(D logD) = Tr(XD) +H(D). (3.5.15)

To see that the supremum is achieved, we can take D = eX/Tr eX . Then we have

Tr(XD) +H(D) = Tr

(
X

eX

Tr eX

)
+H

(
eX

Tr eX

)
= Tr

(
X

eX

Tr eX

)
− Tr

(
eX

Tr eX
log

eX

Tr eX

)
= Tr

(
X

eX

Tr eX

)
− Tr

(
X

eX

Tr eX

)
+ Tr

(
eX

Tr eX
log Tr eX

)
= logTr eX .

(3.5.16)
Thus the equality holds when we take D as the Gibbs state.

Theorem 3.5.3 (Gibbs variational principle for entropy).

H(D) = inf
x∈Hn

[
log Tr eX − Tr(DX)

]
(3.5.17)

Proof. For any X ∈ Hn, we have

H(D) ≤ log Tr eX − TrDX. (3.5.18)

If we take X = logD, then

log Tr elogD − Tr(D logD) = −Tr(D logD). (3.5.19)
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Theorem 3.5.4 (Gibbs variational principle for relative entropy).

log Tr eX+logA = sup{TrDX −H(D||A)}. (3.5.20)

H(D||A) = inf
X∈Hn

[
log Tr eX+logA − TrDX

]
. (3.5.21)

Remark 35. From the results above, we can see that log Tr eX (log Tr eX+logA) is in fact the Legendre
transform of H(D) (H(D||A))

3.6 Trace Hölder inequalities and Minkowski inequalities
Theorem 3.6.1. 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1, A,B ∈Mn(C), then we have

|Tr(AB)| ≤ ∥A∥p∥B∥q. (3.6.1)

When 1 < p, q < ∞, the equality is achieved iff VA = V ∗
B and |A|p

∥A∥pp
= |B∗|q

∥B∥qq
. Here VA, VB are the polar

part of A,B respectively.

Remark 36. The result is trivial if one of p, q is 1. We assume that q = 1. In this case, p = ∞. Then

|Tr(AB)| ≤ Tr(|AB|) ≤ ∥A∥∥B∥1, (3.6.2)

where the first inequality follows from the Cauchy-Schwarz inequality

|Tr(AB)| = Tr
(
VAB|AB|1/2|AB|1/2

)
≤ Tr(|AB|) (3.6.3)

and the second inequality is Proposition 28.

First Proof. exercise 6

Second Proof.

Lemma 6 (Hadamard three line theorem). Suppose f(z) is an analytic function in the strip Ω = {z ∈
C : a ≤ Re z ≤ b}, then we have M(x) := supy∈R |f(x+ iy)| is a logarithmic convex function in [a, b].
That is,

M(ta+ (1− t)b) ≤M(a)tM(b)1−t, ∀t ∈ [0, 1]. (3.6.4)

Proof of Lemma 6. W.L.O.G. we assume thatM(a) =M(b) = 1. Apply maximum principle to Fn(z) =
f(z)ez

2/ne−1/n, we have |Fn(z)| ≤ 1 on Ω. Letting n→ ∞ we have |f(z)| ≤ 1 on Ω.

Without loss of generality, we assume that ∥A∥p = ∥B∥q = 1. We construct the following analytic
function on the stripe 0 < Re z < 1 that continuously extends to the boundary:

f(z) = Tr
(
VA|A|pz|B∗|q(1−z)VB

)
(3.6.5)

Let z = 1/p and apply Lemma 6, we have

|Tr(AB)| = |f(1/p)| ≤ 1. (3.6.6)

Suppose that |Tr(AB)| = 1, then |f(1/p)| = 1. By maximum modulus principle, we have |f(1/2)| = 1.
By the equality of Cauchy-Schwarz inequality we have VA|A|p/2 = V ∗

B|B∗|q/2. Therefore, we have
|A|p
∥A∥pp

= |B∗|q
∥B∥qq

and VA = V ∗
B . We can verify that if these conditions hold, then we indeed have |Tr(AB)| =

Tr(VA|A||B∗|VB) = Tr(A|A|pV ∗
A) = Tr(|A|p) = ∥A∥1/pp = 1.
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Third Proof. We apply the rank-1 decomposition.
We take A = VA|A| = VA

∑n
j=1 s

A
j P

A
j with each PA

j being a minimal projection. We absorb the
polar part into PA

j by defining V A
j := VAP

A
j . Then V A

j is a rank-1 partial isometry. We can also do the
same for B. Then we have

|Tr(AB)| =

∣∣∣∣∣
n∑

j,k=1

Tr
(
sAj s

B
k V

A
j V

B
k

)∣∣∣∣∣ ≤
n∑

j,k=1

sAj s
B
j

∣∣Tr(V A
j V

B
k

)∣∣. (3.6.7)

Next we estimate
∣∣Tr(V A

j V
B
k

)∣∣. By Proposition 28∣∣Tr(V A
j V

B
k

)∣∣ ≤ min{
∥∥V B

k

∥∥∥∥V A
j

∥∥
1
,
∥∥V A

j

∥∥∥∥V B
k

∥∥
1
} = min{Tr

(∣∣V A
j

∣∣),Tr(∣∣V B
j

∣∣)} ≤ Tr
(∣∣V A

j

∣∣)1/pTr(∣∣V B
k

∣∣)1/q.
(3.6.8)

By classical Hölder inequality, we have

|Tr(AB)| ≤
n∑

j,k=1

sAj s
B
k Tr

(∣∣V A
j

∣∣)1/pTr(∣∣V B
k

∣∣)1/q = n∑
j=1

{
(sAj )

pTr
(∣∣V A

j

∣∣)}1/p {(sBk )q Tr(∣∣V B
k

∣∣)}1/q
=

(
n∑
j=1

Tr
(
sAj
)p
PA
j

)1/p( n∑
k=1

Tr
(
sBk
)q
PB
k

)1/q

= (Tr |A|p)1/p(Tr |B|q)1/q = ∥A∥p∥B∥q.

(3.6.9)

Remark 37. From both proof above we can see that the polar decomposition is vital to the proof.

Proposition 39.

|Tr(A1 · · ·Am)| ≤ ∥A1∥p1 · · · ∥Am∥pm ,
1

p1
+ · · ·+ 1

pm
= 1, 1 ≤ pi ≤ ∞. (3.6.10)

Proposition 40 (The variational formula for p-functional).

∥A∥p = sup{Tr(AX) : ∥X∥q = 1}, 1 ≤ p ≤ ∞. (3.6.11)

Proof. On the one hand,
|TrAX| ≤ ∥A∥p∥X∥q = ∥A∥p. (3.6.12)

On the other hand, if we take

X =
|A|p−1

∥A∥pp
|V |∗A, Tr(AX) = ∥A∥p. (3.6.13)

Theorem 3.6.2. 1 ≤ r, p, q ≤ ∞ with 1
r
= 1

p
+ 1

q
, then ∥AB∥r ≤ ∥A∥p∥B∥q.

Proof. By the variational formula, we have (r′ denotes the Hölder conjugate of r)

∥AB∥r = sup{|Tr(ABX)| : ∥X∥r′ = 1}
Proposition 39

≤ sup{∥A∥p∥B∥q∥X∥r′ : ∥X∥r′ = 1} = ∥A∥p∥B∥q.
(3.6.14)
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In fact, in the classical case, the Hölder inequality also holds for 0 < p < 1. However we should point
out that the proof of the trace Hölder inequality for 0 < p < 1 would be much more difficult than the
case p ≥ 1. In fact, we will use the Minkowski inequality to prove the Hölder inequality for 0 < p < 1.
We first state the Minkowski inequality for 1 ≤ p ≤ ∞. This also implies that the p-functional we have
defined previously is actually a norm and (Mn(C), ∥·∥p) is a normed vector space when 1 ≤ p ≤ ∞.

Theorem 3.6.3 (Minkowski inequality).

∥A+B∥p ≤ ∥A∥p + ∥B∥p, 1 ≤ p ≤ ∞. (3.6.15)

Proof. We can use the variational formula to show that. In fact, we have

∥A+B∥p = sup{|Tr(A+B)X| : ∥X∥q = 1} ≤ sup
∥X∥q=1

{|Tr(AX)|}+ sup
∥X∥q=1

{|Tr(BX)|} = ∥A∥p+∥B∥p.

(3.6.16)

For 0 < p < 1, the p-functional is actually not a norm. However, we can still show that the p-
functional induces a metric on H≥0

n . In fact we have

Proposition 41 (Minkowski inequality for 0 < p < 1). A,B ≥ 0, 0 < p < 1, then

∥A+B∥pp ≤ ∥A∥pp + ∥B∥pp, 0 < p < 1. (3.6.17)

Proof. We define
T = A1/2(A+B)−1/2, S = B1/2(A+B)−1/2. (3.6.18)

Here we define (A+B)−1/2 to be

(A+B)−1/2 := (A+B)−1/2|Range(A+B)PRange(A+B). (3.6.19)

Therefore

T ∗T +S∗S = A1/2(A+B)−1/2+B1/2(A+B)−1/2 = (A+B)−1/2(A+B)(A+B)−1/2 = PRange(A+B).
(3.6.20)

Therefore

Tr((A+B)p) = Tr
(
(A+B)p/2(T ∗T + S∗S)(A+B)p/2

)
= Tr(T (A+B)pT ∗) + Tr(S(A+B)pS∗)

T ∗T + S∗S ≤ 1, xp concave, Proposition 34
≤ Tr[(T (A+B)T ∗)p] + Tr[(S(A+B)S∗)p]

monoticity
≤ Tr(Ap) + Tr(Bp).

(3.6.21)

Theorem 3.6.4 (Minkowski inequality). Suppose A,B ∈Mn(C), then we have 0 < p < 1,

∥A+B∥pp ≤ ∥A∥pp + ∥B∥pp. (3.6.22)
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Proof. Recall Theorem 2.5.2
|A+B| ≤ U |A|U∗ + V |A|V ∗, (3.6.23)

then by the operator monoticity of x 7→ xp (0 < p < 1) we have

|A+B|p ≤ (U |A|U∗ + V |B|V ∗)p. (3.6.24)

Since U |A|U∗, V |B|V ∗ ≥ 0, by Proposition 41 we have

Tr |A+B|p ≤ Tr(U |A|U∗)p + Tr(V |B|V ∗)p = Tr(|A|p) + Tr(|B|p). (3.6.25)

Now, we are at the place to prove the most general Hölder’s inequality for general matrices A,B ∈
Mn(C). This is a very strong theorem.

Theorem 3.6.5 (Hölder’s inequality). Suppose that 0 ≤ p, q, r ≤ ∞ such that 1
p
+ 1

q
= 1

r
,A,B ∈Mn(C),

then we have
∥AB∥r ≤ ∥A∥p∥B∥q. (3.6.26)

Proof. Step 1. For r ≥ 1, we have already proved this in Theorem 3.6.2.
Step 2. If 0 < r < 1, max{p, q} ≥ 2. Without loss of generality, we assume q ≥ 2. Then we have

∥AB∥rr = Tr |AB|r = Tr(B∗A∗AB)r/2 = Tr
(
B∗|A|2B

)r/2
= ∥|A|B∥rr. (3.6.27)

Therefore, without loss of generality, we can assume that A ≥ 0, then we can apply spectral decomposi-
tion to A

A =
n∑
j=1

sjPj, sj ≥ 0, Pj minimal projection. (3.6.28)

By Minkowski inequality, we have

∥AB∥rr = Tr(|AB|)r =
n∑
j=1

srj∥PjB∥r. (3.6.29)

Not that ∥PkB∥r ≤ ∥PkPkB∥r = ∥Pk|PkB|∥r and Pk commutes with |PkB| = (PkBB
∗Pk)

1
2 , we can

use the classical Hölder inequality to obtain

∥PkB∥rr ≤ ∥Pk∥pp∥PkB∥qq. (3.6.30)

Therefore, we have

∥AB∥rr ≤
n∑
k=1

∥Pk∥rp∥PkB∥rqs
r
k

1= r
p
+ r

q

≤

[
n∑
k=1

spk Tr(Pk)

] r
p
[

n∑
k=1

∥PkB∥qq

] r
q

= ∥A∥rp

[
n∑
k=1

∥PkB∥qq

] r
q

(3.6.31)
Moreover, by q ≥ 2, we have t 7→ tq/2 is a convex function, therefore by Jensen trace inequality Theo-
rem 3.3.1, we have
n∑
k=1

∥PkB∥qq =
n∑
k=1

Tr(PkB
∗BPk)

q/2
Jensen trace inequality

≤
n∑
k=1

Tr
(
Pk(B

∗B)q/2Pk
)
= Tr

(
(B∗B)q/2

)
= ∥B∥qq.

(3.6.32)
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Therefore,
∥AB∥rr ≤ ∥A∥rp∥B∥rq. (3.6.33)

Step 3. For the last step, 0 < r < 1, max{p, q} < 2. We take l ∈ N such that lp ≥ 2, then by the
result of Step2 we have

∥AB∥r =
∥∥∥A 1

lA
l−1
l B
∥∥∥
r
≤
∥∥∥A 1

l

∥∥∥
lp

∥∥∥A l−1
l B
∥∥∥
r1
. (3.6.34)

Here r1 is the Hölder conjugate of lp. If r1 ≥ 1, then we take p1 = lp
l−1

. By Hölder’s inequality for r ≥ 1
Theorem 3.6.2, we have ∥∥∥A l−1

l B
∥∥∥
r1
≤
∥∥∥A l−1

l

∥∥∥
p1
∥B∥q. (3.6.35)

therefore, by the equality of Theorem 3.6.1

∥AB∥r ≤
∥∥∥A 1

l

∥∥∥
lp

∥∥∥A l−1
l

∥∥∥
p1
∥B∥q = ∥A∥p∥B∥q. (3.6.36)

If r1, we repeat the above procedure,
∥∥∥A l−1

l B
∥∥∥
r1

≤ ∥A∥lp
∥∥∥A l−2

l B
∥∥∥
r2

. After at most l times, finally we

can see the inequality holds.

Proposition 42. Suppose that 0 ≤ p1, · · · , pm, r ≤ ∞ with 1
p1

+ · · ·+ 1
pm

= 1
r
, then we have

∥A1 · · ·Am∥r ≤ ∥A1∥p1 · · · ∥Am∥pm , Ai ∈Mn(C). (3.6.37)

Proof. It follows from Theorem 3.6.5.

Proposition 43 (Reverse Hölder inequality). Suppose that 0 < p, q < 1, 1
p
+ 1

q
= 1 and A,B > 0, then

we have
∥AB∥1 ≥ ∥A∥p∥B∥q. (3.6.38)

Proof.

∥A∥p =
∥∥ABB−1

∥∥
p

Theorem 3.6.5
≤ ∥AB∥1

∥∥B−1
∥∥
q
. (3.6.39)

Proposition 44 (Reverse Minkowski inequality). Suppose that 0 < p < 1, then we have

∥A+B∥pp ≥ ∥A∥pp + ∥B∥pp. 0 < p < 1, A,B ≥ 0. (3.6.40)

Proof. Let A,B invertible, then we have

Tr((A+B)p) = Tr
(
(A+B)p−1(A+B)

)
= Tr

(
(A+B)p−1A

)
+ Tr

(
(A+B)p−1B

)
Reverse Hölder Proposition 43

≥ ∥A∥p∥A+B∥p−1
p + ∥B∥p∥A+B∥p−1

p .
(3.6.41)

Next we present two applications of the Hölder’s inequality.

Proposition 45. A,B ≥ 0, 0 ≤ α ≤ 1, then we have

Tr
(
A1−αBα

)
≥ Tr

A+B

2
− Tr |A−B|. (3.6.42)
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Proof. We take X = (A−B)+, then A−B ≤ X i.e. A ≤ B +X . Now we have

Tr(A)− Tr
(
BαA1−α) = Tr

(
(Aα −Bα)A1−α)

operator monoticity
≤ Tr

(
((X +B)α −Bα)A1−α)

monoticity and (X +B)α −Bα ≥ 0

≤ Tr
(
((X +B)α −Bα) (X +B)1−α

)
= Tr(X +B)− Tr

(
Bα(B +X)1−α

)
≤ Tr(X) + Tr(B)− Tr(B) = Tr(X)

≤ Tr(|A−B|)

(3.6.43)

Therefore Tr(A1−αBα) ≥ Tr(A)−Tr(|A−B|), similarly Tr(A1−αBα) ≥ Tr(B)−Tr(|B − A|). There-
fore we have

Tr
(
A1−αBα

)
≥ Tr(A) + Tr(B)

2
− Tr(|A−B|). (3.6.44)

Remark 38. If TrA = TrB = 1 (density matrices), then we have Tr(A1−αBα) ≥ 1− Tr(|A−B|) i.e.
∥A−B∥1 ≥ 1− Tr(A1−αBα).

Theorem 3.6.6 (Weyl’s inequality). A ∈Mn(C), then

n∑
j=1

|λj(A)|k ≤
n∑
j=1

λj(|A|)k. (3.6.45)

Proof. Recall Theorem 1.3.1, we have

|λj(A)| = lim
m→∞

(λj(|A|m))1/m. (3.6.46)

For any ε > 0, ∃m0 s.t. |λj(A)| ≤ (1 + ε)λj(|Am|)1/m(m ≥ m0). Therefore

n∑
j=1

|λj(A)|k ≤ (1 + ε)k
n∑
j=1

λj(|Am|)k/m = (1 + ε)k
n∑
j=1

∥Am∥1/mk/m

Hölder
≤ (1 + ε)k

∥A∥kk · · · ∥A∥
k
k︸ ︷︷ ︸

m

 1
m

= (1 + ε)k∥A∥kk

(3.6.47)

Remark 39. This global Weyl’s inequality will be useful for Golden-Thompson inequality we will discuss
later.

3.7 Trace joint convexity
The main goal of this section is to show several joint convexity results that are strongly related to the Lieb
concavity (see example 12). To do this, we first recall some essential results.
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Proposition 46. The mapping (A,X) → X∗A−1X is jointly concave on H>0
n ×Mn(C).

Proof. See Proposition 14.

Proposition 47 (Ando’s concavity). (A,B) 7→ Ap⊗Br is jointly concave on H>0
n ×H>0

n for 0 ≤ p, r ≤ 1
and p+ r ≤ 1.

Remark 40. Can we say for more generalized p and r?

Proposition 48. The mapping (A,B) 7→ Ap ⊗ Br is jointly convex on H>0
n × H>0

n for 1 ≤ p ≤ 2,
−1 ≤ r ≤ 0, and p+ r ≥ 1.

Proof. From the conditions we see that 0 ≤ 2 − p − r ≤ 1, 0 ≤ 2 − p,−r ≤ 1. By Ando’s concavity
Proposition 47 we have

(A,B) 7→ A2−p ⊗B−r is jointly concave on H>0
n ×H>0

n . (3.7.1)

Moreover, we notice that

• (A2−p ⊗B−r)−1 = A−2Ap ⊗Br;

• We consider
(A⊗ I)(A−2Ap ⊗Br)(A⊗ I) = Ap ⊗Br. (3.7.2)

Thus, by the operator convexity of t 7→ t−1 and the joint concavity of (A,X) 7→ X∗A−1X Proposition 46,
we have

(A,B) 7→ (A⊗ I)∗[(A2−p ⊗B−r)−1](A⊗ I) = Ap ⊗Br (3.7.3)

is jointly convex.

Remark 41. And symmetrically, by −1 ≤ p ≤ 0, 1 ≤ r ≤ 2 and 0 ≤ p + r ≤ 1, the mapping is also
jointly convexity.

Proposition 49. The mapping (A,B) 7→ Ap ⊗ Br is jointly concave on H>0
n ×H>0

n for −1 ≤ p, r ≤ 0,
and −1 ≤ p+ r ≤ 0.

Proof. It follows readily from the convexity of A 7→ A−1.

Remark 42. The only essence is the Ando’s concavity. But it does not hold for p + r ≥ 1. A quick
explanation is by considering the algebraic homomorphism Ap ⊗ Ar 7→ Ap+r. So when p + r ≥ 1, the
concavity is changed to convexity when p+ r ≥ 1.

Recall the skew information

I(ρ,X) :=
1

2
Tr
(
[ρ

1
2 , X]∗[ρ

1
2 , X]

)
, where ρ is a density matrix. (3.7.4)

Remark 43 (Remark of history). Wigner-Yanase-Dyson (1973) conjecture: to study the convesity of

Is(ρ,X) =
1

2
Tr
(
[ρs, X]∗[ρ1−s, X]

)
, 0 ≤ s ≤ 1. (3.7.5)

Lieb (1976) gave the Lieb’s concavity
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Theorem 3.7.1 (Lieb, 1976). (A,B) 7→ Tr(X∗ApXBr) is jointly concave if 0 ≤ p + r ≤ 1 and
0 ≤ p, r ≤ 1.

Strategy of proof. Consider the analytic function

f(z) = Tr
(
X∗AzXBs−z) (3.7.6)

on a strip. Then we use the Hadamard’s three line theorem to discuss the maximum of f(z) on the
boundary of the strip.

In fact, Lieb’s concavity can also be generalized like the case of Ando’s concavity. We can also
consider the joint convexity of the mapping (A,B) 7→ Tr(X∗ApXBr) for p+ r ≥ 1.

Proposition 50. The mapping (A,B) 7→ Tr(X∗ApXBr) is jointly convex on H>0
n ×H>0

n for

• 1 ≤ p ≤ 2, −1 ≤ r ≤ 0, p+ r ≥ 1;

• −1 ≤ p ≤ 0, 1 ≤ r ≤ 2, p+ r ≥ 1;

• −1 ≤ p ≤ 0, −1 ≤ r ≤ 0, −1 ≤ p+ r ≤ 0.

Proof. We take E =
∑n

j,k=1Ejk ⊗ Ejk, then

Tr(X∗ApXBr) =
1

n
(Tr⊗Tr) [E(X∗ ⊗ I)(Ap ⊗Br)(X ⊗ I)E] (3.7.7)

then the results follows from the generalized Ando’s convexity Proposition 48 and Proposition 49.

Another natural question is whether we can also consider the joint convexity of the mapping

(A,B) 7→ Tr
(
X∗A−pXB−r), 0 ≤ p, r ≤ 1, p+ r ≤ 1. (3.7.8)

The original proof is given by Lieb, which seems a little bit complicated but quite provocative. In fact he
considered the extended problem on Mn(C)⊕Mn(C) rather than the tensor product space.

Proof. Let λ ∈ [0, 1] and let

A = λA1 + (1− λ)A2, B = λB1 + (1− λ)B2. (3.7.9)

Let X1, X2, X
′
1, X

′
2 ∈Mn(C), then we would like to show

⟨λX ′
1 + (1− λ)X ′

2, A
−p(λX1 + (1− λ)X2)B

−r⟩ ≤ λ⟨X ′
1, A

−pX1B
−r⟩+ (1− λ)⟨X ′

2, A
−pX2B

−r⟩.
(3.7.10)

Here ⟨·, ·⟩ is the Hilbert-Schmidt inner product on Mn(C). Since A,B ∈ H>0
n , we can verify that ⟨·, ·⟩1

and ⟨·, ·⟩2 defined as follows are both inner products on Mn(C)⊕Mn(C):

⟨X ′
1 ⊕X ′

2, X1 ⊕X2⟩1 := ⟨λX ′
1 + (1− λ)X ′

2, A
−p(λX1 + (1− λ)X2)B

−r⟩,
⟨X ′

1 ⊕X ′
2, X1 ⊕X2⟩2 := ⟨X ′

1, A
−pX1B

−r⟩+ (1− λ)⟨X ′
2, A

−pX2B
−r⟩.

(3.7.11)

By Riesz’s representation theorem, there exists a linear operator T on Mn(C)⊕Mn(C) such that

⟨X ′
1 ⊕X ′

2, X1 ⊕X2⟩1 = ⟨X ′
1 ⊕X ′

2, T (X1 ⊕X2)⟩2. (3.7.12)



3.7. TRACE JOINT CONVEXITY 65

Let a be an eigenvalue of T with eigenvector Y1 ⊕ Y2. Then we have

⟨X ′
1 ⊕X ′

2, Y1 ⊕ Y2⟩2 = aλ⟨X ′
1, A

−p
1 Y1B

−r
1 ⟩+ a(1− λ)⟨X ′

2, A
−p
2 Y2B

−r
2 ⟩. (3.7.13)

⟨X ′
1 ⊕X ′

2, Y1 ⊕ Y2⟩1 = λ⟨X ′
1, A

−p(λX1 + (1− λ)X2)B
−r⟩+ (1− λ)⟨X ′

2, A
−p(λX1 + (1− λ)X2)B

−r⟩.
(3.7.14)

We denote Y := A−p(λX1 + (1− λ)X2)B
−r, then

λ⟨X ′
1, Y ⟩+ (1− λ)⟨X ′

2, Y ⟩ = aλ⟨X ′
1, A

−p
1 Y1B

−r
1 ⟩+ a(1− λ)⟨X ′

2, A
−p
2 Y2B

−r
2 ⟩ (3.7.15)

By the arbitrariness of X ′
1, X

′
2, we can see that

aA−p
1 Y1B

−r
1 = Y = aA−p

2 Y2B
−r
2 . (3.7.16)

Therefore, by Lieb’s concavity example 12 we have

Tr(Y ∗(λY1 + (1− λ)Y2))
definition of Y

= Tr(Y ∗ApY Br)
Lieb concavity

≥ λTr(Y ∗Ap1Y B
r
1) + (1− λ) Tr(Y ∗Ap2Y B

r
2)

= aλTr(Y ∗Y1) + a(1− λ) Tr(Y ∗Y2)

= aTr(Y ∗(λY1 + (1− λ)Y2)) ⇒ a ≤ 1.

(3.7.17)

Therefore T ≤ 1, thus
⟨X ′

1 ⊕X ′
2, X1 ⊕X2⟩1 ≤ ⟨X ′

1 ⊕X ′
2, X1 ⊕X2⟩2 (3.7.18)

which is what we want to show.

Another proof.
(X∗ ⊗ I)(Ap ⊗ (BT )r)−1(X ⊗ I) (3.7.19)

is joint convex since t 7→ t−1 is decreasing on (0,∞) together with example 12 and Proposition 46.

Remark 44. The tensor product proof is only single line. But we should remark again that Lieb’s original
proof is sometimes the only viable approach.

Theorem 3.7.2. (D,X) 7→
∫∞
0

Tr
(
X∗ 1

s+D
X 1

s+D

)
ds is jointly convex.

Remark 45. Recall that
ΦD(X) :=

∫ ∞

0

1

s+D
X

1

s+D
ds, (3.7.20)

then

Φ−1
D (X) =

∫ 1

0

DsXD1−sds. (3.7.21)

Proof. We follow the proof of Lieb. We define

D = λD1 + (1− λ)D2. (3.7.22)

Define the conjugate bilinear form

⟨X ′
1 ⊕X ′

2, X1 ⊕X2⟩1 := ⟨λX ′
1 + (1− λ)X ′

2,ΦD(λX1 + (1− λ)X2)⟩, (3.7.23)
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⟨X ′
1 ⊕X ′

2, X1 ⊕X2⟩2 := λ⟨X ′
1,ΦD1 [X1]⟩+ (1− λ)⟨X ′

2,ΦD2 [X2]⟩. (3.7.24)

Repeat the previous proof, we have

aΦD1(Y1) = ΦD(λY1 + (1− λ)Y2) =: Y = aΦD2(Y2). (3.7.25)

By the convexity of Φ−1
D (since Φ−1

D (X) =
∫ 1

0
DsXD1−sds, by noncommutative Jensen inequality), we

have

Tr(Y ∗[λY1 + (1− λ)Y2]) = Tr
(
Y ∗Φ−1

D (Y )
)

Lieb’s concavity
≥ λTr

(
Y ∗,Φ−1

D1
(Y1)

)
+ (1− λ) Tr

(
Y ∗Φ−1

D2
(Y2)

)
= aTr(Y ∗[λY1 + (1− λ)Y2]) ⇒ a ≤ 1 ⇒ T ≤ 1.

(3.7.26)

Remark 46. The phylosiphy is that: the concavity of the inverse gives the joint convexity of the original
mapping.

Remark 47 (Remark of history). WYD conjecture: we study the convexity of Tr(ρsX∗ρ1−sX) by studying
the convexity of Tr(ApX∗BX). The generalized WYD conjecture for Tr

(
[A

p
2X∗BrXA

p
2 ]s
)

was also
resolved very recently by Zhang 2019.

3.8 Golden-Thompson inequality
Lemma 7 (Lie-Trotter formula). Let A,B ∈Mn(C), then

eA+B = lim
m→∞

(
e

A
m e

B
m

)m
. (3.8.1)

Remark 48. For analytic function eA = I + A + 1
2
A2 + · · · can be defined using power-series, which

means that the definition can in general be the whole domain of convergence, instead of simply the
spectrum like in the usual case of Hermitian matrices.

Proof. Let Xm = eA/meB/m, Ym = e
A+B
m .

∥Xm
m − Y m

m ∥ ≤ m∥Xm − Ym∥{max(∥Xm∥, ∥Ym∥)}m−1(by factorization of Am −Bm) (3.8.2)

Moreover,
∥Xm∥ ≤ e

∥A∥+∥B∥
m , ∥Ym∥ ≤ e

∥A∥+∥B∥
m , (3.8.3)

thus
∥Xm

m − Y m
m ∥ ≤ m∥Xm − Ym∥e∥A∥+∥B∥. (3.8.4)

We compute

Xm =

(
I +

A

m
+

A2

2m2
+ o

(
1

m2

))(
I +

B

m
+

B2

2m2
+ o

(
1

m2

))
, (3.8.5)

Ym =

(
I +

A+B

m
+

(A+B)2

2m2
+ o

(
1

m2

))
. (3.8.6)
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Xm − Ym =
AB −BA

2m2
+ o

(
1

m2

)
. (3.8.7)

Thus

∥Xm
m − Y m

m ∥ ≲ m · 1

m2
exp(∥A∥+ ∥B∥) ∈ o

(
1

m

)
. (3.8.8)

Let m→ ∞, we have
lim
m→∞

∥Xm
m − Y m

m ∥ = 0. (3.8.9)

⇒ lim
m→∞

[
e

A
m e

B
m

]m
= eA+B. (3.8.10)

Theorem 3.8.1 (Golden-Thompson inequality). Suppose that A,B ∈Mn(C), then we have∣∣Tr(eA+B)∣∣ ≤ Tr
(
eReAeReB

)
. (3.8.11)

Proof. For r ∈ N, by Weyl’s inequality Theorem 3.6.6

∣∣Tr(AB)2r
∣∣ = n∑

j=1

|λj(AB)|2r ≤
n∑
j=1

λj(|AB|)2r = Tr |AB|2r. (3.8.12)

Tr |AB|2r = Tr((B∗A∗AB)r) = Tr((A∗ABB∗)r) = Tr
(
[|A|2|B∗|2]r

)
. (3.8.13)

Let m = 2k, we have∣∣∣Tr(AB)2
k
∣∣∣ ≤ Tr

(
[|A|2|B∗|2]2k−1

)
≤ Tr

(
[|A|4|B∗|4]2k−2

)
≤ · · · ≤ Tr

(
[|A|2

k

|B∗|2
k

]
)
. (3.8.14)

We apply the change of variable A 7→ e2
−kA, B 7→ e2

−kB∗ to get the result. We have

∣∣Tr(eA+B)∣∣ = lim
k→∞

∣∣∣∣Tr(e2−kAe2
−kB
)2k∣∣∣∣ ≤ lim

k→∞
Tr
(
(e−2kA∗

e2
−kA)2

k−1

(e−2kB∗
e2

−kB)2
k−1
)
= Tr

(
eReAeReB

)
.

(3.8.15)

Remark 49. For A,B Hermitian, we have

Tr
(
eA+B

)
= Tr

(
eAeB

)
(3.8.16)

But in general we do not have ∣∣Tr(eA+B+C
)∣∣ = Tr

(
eAeBeC

)
. (3.8.17)

A more generlized result is Golden-Thompson-Lieb inequality.

Lemma 8. A 7→ Tr
(
eX+logA

)
is concave, where X is a density matrix.
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Proof. By Gibbs variational formula, we have

log Tr
(
eX+logA

)
= sup

Ã

{Tr
(
XÃ

)
−H(Ã||A)} (3.8.18)

The supremum is achieved when Ã = eX+logA

Tr(eX+logA)
. For A = λA1 + (1− λ)A2 (λ ∈ [0, 1]), we have

λ log Tr
(
eX+logA1

)
+ (1− λ) log Tr

(
eX+logA2

)
=λTr

(
XÃ1

)
− λH(Ã1||A1) + (1− λ) Tr

(
XÃ2

)
− (1− λ)H(Ã2||A2).

(3.8.19)

Since −H(B||A) is jointly concave for PRange(B) ≥ PRange(A) by Theorem 3.4.4, we have

λ log Tr
(
eX+logA1

)
+ (1− λ) log Tr

(
eX+logA2

)
≤Tr

(
X(λÃ1 + (1− λ)Ã2)

)
−H(λÃ1 + (1− λ)Ã2||λA1 + (1− λ)A2︸ ︷︷ ︸

=A

)

Gibbs variational formula again
≤ sup

Ã

{Tr
(
XÃ

)
−H(Ã||A)} = logTr

(
eX+logA

)
.

(3.8.20)

Since t 7→ e−t is decreasing and concave, we have

A 7→ −Tr
(
eX+logA

)
(3.8.21)

is convex. Thus A 7→ Tr
(
eX+logA

)
is concave.

Theorem 3.8.2 (Golden-Thompson-Lieb inequality). Suppose thatA,B,C are Hermitian matrices, then

Tr
(
eA+B+C

)
≤
∫ ∞

0

Tr

(
eA

1

λ+ e−C
eB

1

λ+ e−C

)
dλ. (3.8.22)

Proof. We denote
h(t) = Tr

(
eX+log(D+tY )

)
(3.8.23)

where Y is a Hermitian matrix. By Lemma 8 we have h(t) is concave. Therefore

h(1)− h(0) ≤ h′(0). (3.8.24)

Moreover,

h′(0) = Tr

(
eX+logD

∫ ∞

0

1

λ+D
Y

1

λ+D
dλ

)
. (3.8.25)

Lemma 9. Let Ω be a convex cone, f is a convex function on Ω and f is homogeneous of order 1
i.e. f(λx) = λf(x) for λ > 0 and x ∈ Ω. Let y ∈ Ω and limt→0+

f(x+ty)−f(x)
t

exists, then f(y) ≥
limt→0+

f(x+ty)−f(x)
t

.

Proof. By the convexity of f , we have h(t) := f(x + ty) is convex and thus h′(0) ≤ h(1) − h(0),
therefore

f(x+ y)− f(x) ≥ lim
t→0+

f(x+ ty)− f(x)

t
. (3.8.26)
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By the convexity and homogeneity of f , we have

1

2
f(x+y) = f

(
x+ y

2

)
≤ 1

2
[f(x)+f(y)] ⇒ f(x+y)−f(x) ≤ f(x)+f(y)−f(x) = f(y). (3.8.27)

Thus we have

f(y) ≥ lim
t→0+

f(x+ ty)− f(x)

t
. (3.8.28)

Note that in our case, h(t) is also a homogeneous function of order 1 and −h(t) is convex, then we
have

h′(0) ≥ h(1)− h(0) = Tr exp(X + log(D + Y ))− Tr exp(X + logD) ≥ Tr
(
eX+log Y

)
. (3.8.29)

Thus we take D = e−C , X = A+ C, Y = eB, then we have

Tr
(
eA+B+C

)
≤
∫ ∞

0

Tr

(
eA

1

λ+ e−C
eB

1

λ+ e−C

)
dλ. (3.8.30)

Next we give another version of Golden-Thompson theorem in terms of the so-called weak majoriza-
tion. The statement is

Theorem 3.8.3 (Informal).
eA+B ≺w e

A
2 eBe

A
2 . (3.8.31)

This is called Weyl’s majorization theorem. We will focus on addressing this in the next section.

3.9 Weyl majorization theorem
Theorem 3.9.1 (Karamata’s inequality). x, y ∈ Rn are vector ordered non-increasingly, then y ≺ x
⇐⇒ for any convex function f we have

∑n
j=1 f(yj) ≤

∑n
j=1 f(xj).

Proof of Theorem 3.9.1. ⇒ We recall that y ≺ x iff there exists a doubly stochastic matrix S such that
y = Sx. We take f to be a convex function, then we have

n∑
j=1

f(yj) =
n∑
j=1

f

(
n∑
k=1

Sjkxk

)
f convex
≤

n∑
j=1

n∑
k=1

Sjkf(xk) =
n∑
k=1

f(xk)

(
n∑
j=1

Sjk

)
=

n∑
k=1

f(xk).

(3.9.1)
⇐ We consider f(x) = |x− t| convex, then we have

n∑
j=1

|yj − t| ≤
n∑
j=1

|xj − t|. (3.9.2)

We note that
|yj − r| = 2(yj − r)+ − (yj − r). (3.9.3)
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Here t+ is the positive part of t i.e. t+ = max(t, 0). Then we have

n∑
j=1

|yj − r| = 2
n∑
j=1

(yj − r)+ −
n∑
j=1

(yj − r) = 2
n∑
j=1

(yj − r)+ −
n∑
j=1

yj + nr. (3.9.4)

We take r large enough (r ≥ x1), then

(yj − r)+ = (xj − r)+ = 0, ∀j = 1, · · · , n. (3.9.5)

Therefore

−
n∑
j=1

yj + nr ≤ −
n∑
j=1

xj + nr ⇒
n∑
j=1

yj ≥
n∑
j=1

xj. (3.9.6)

Likewise, we can take r small enough (r ≤ min{xj, yj : j = 1, · · · , n}), then we have

n∑
j=1

yj ≤
n∑
j=1

xj. (3.9.7)

Combining the two inequalities, we have
∑n

j=1 yj =
∑n

j=1 xj . Thus we have

n∑
j=1

(yj − r)+ =
1

2

(
n∑
j=1

|yj − r|+
n∑
j=1

(yj − r)

)

=
1

2

(
n∑
j=1

|yj − r|+
n∑
j=1

(xj − r)

)
≤ 1

2

(
n∑
j=1

|xj − r|+
n∑
j=1

(xj − r)

)
=

n∑
j=1

(xj − r)+.

(3.9.8)
Next, we take xk−1 ≤ r ≤ xk, then we have

k∑
j=1

yj − kr ≤
k∑
j=1

(yj − r)+ ≤
n∑
j=1

(yj − r)+ ≤
n∑
j=1

(xj − r)+
by construction

=
k∑
j=1

xj − kr. (3.9.9)

Eliminating kr from both sides, we have

k∑
j=1

yj ≤
k∑
j=1

xj. (3.9.10)

By the arbitrariness of k, we have
∑k

j=1 yj ≤
∑k

j=1 xj for any 1 ≤ k ≤ n, that is y ≺ x together with∑n
j=1 xj =

∑n
j=1 yj .

We give the definition of weak majorization. In a nutshell, the difference between weak majorization
and strong majorization is that the former does not require the equality condition

∑n
j=1 xj =

∑n
j=1 yj .

Definition 3.9.2 (Weak majorization). Let x, y be two real vectors ordered non-increasingly. We say that
y weakly majorizes x, denoted by y ≺w x, if

∑k
j=1 yj ≤

∑k
j=1 xj for any 1 ≤ k ≤ n.

The following equivalence is a very important characterization of weak majorization. When we
encounter weak majorization, we will use this equivalence to deal with it.
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Proposition 51. Let x, y ∈ Rn, then y ≺w x iff there exists x̃ ∈ Rn such that

y ≤ x̃ and x̃ ≺ x. (3.9.11)

Proof. ⇒ Let y ≺w x. We prove by induction. For n = 1, y1 ≤ x1, we only need to take x̃1 = x1. Next
we assume that the statement holds for any 1 ≤ k ≤ n− 1. We take

a = min
1≤k≤n

{
k∑
j=1

xj −
k∑
j=1

yj

}
≥ 0. (3.9.12)

We consider 
y1 + a
y2
...
yn

 (3.9.13)

Then we observe that y1 + a ≥ y2 ≥ · · · ≥ yn, and by construction and y ≺w x, we still have
y1 + a
y2
...
yn

 ≺w


x1
x2
...
xn

.

By the minimum is achieved, we have ∃k0, such that
∑k0

j=1 yj + a =
∑k0

j=1 xj. That is,
y1 + a
y2
...
yk0

 ≺


x1
x2
...
xk0

. (3.9.14)

If k0 = n, we can just take x̃ =


y1 + a
y2
...
yn

. If k0 ̸= n, then we use the induction hypothesis to the

remaining part

yk0+1
...
yn

 to get the required x̃.

Definition 3.9.3 (Doubly substochastic matrix). S ∈ Mn(R) is called doubly substochastic matrix if S
is a non-negative matrix and

∑n
j=1 Sjk ≤ 1,

∑n
k=1 Sjk ≤ 1 for any 1 ≤ k ≤ n.

Proposition 52. x, y ≥ 0, then y ≺w x iff ∃ a doubly substochastic matrix S such that y = Sx.

Proof. ⇒ By y ≺w x and Proposition 51, there exists x̃ such that y ≤ x̃ ≺ x. Therefore, there exists
a doubly stochastic matrix S0 such that x̃ = S0x. Since x, y ≥ 0, we have x̃j ̸= 0, thus we can take
aj =

yj
x̃j
, 0 ≤ aj ≤ 1 and S = diag(a1, · · · , an)S0. Then we have y = Sx and S is doubly substochastic.

⇐ is by iteratively adjust S to obtain a doubly stochastic matrix S0. We omit the details here.



72 CHAPTER 3. TRACE INEQUALITIES

Theorem 3.9.4 (Karamata’s inequality). Let x, y ∈ Rn, y ≺w x, then for any convex increasing function
f we have

n∑
j=1

f(yj) ≤
n∑
j=1

f(xj). (3.9.15)

Proof. ⇒ By Proposition 51, we have y ≤ x̃ ≺ x. By the convexity of f and Karamata’s inequality, we
have

n∑
j=1

f(x̃j) ≤
n∑
j=1

f(xj). (3.9.16)

Then by the monotonicity of f , we have

n∑
j=1

f(yj) ≤
n∑
j=1

f(x̃j) ≤
n∑
j=1

f(xj). (3.9.17)

⇐ We take f(t) = (t− r)+, by f is convex and increasing, we have

n∑
j=1

(yj − r)+ ≤
n∑
j=1

(xj − r)+. (3.9.18)

We take xk−1 ≤ r ≤ xk, then we have

k∑
j=1

yj − kr ≤
k∑
j=1

(yj − r)+ ≤
n∑
j=1

(yj − r)+ ≤
n∑
j=1

(xj − r)+ =
k∑
j=1

xj − kr. (3.9.19)

The last equality follows from the construction of r. Therefore we have

k∑
j=1

yj ≤
k∑
j=1

xj, ∀1 ≤ k ≤ n. (3.9.20)

We next define the logarithmic majorization.

Definition 3.9.5 (Logarithmic majorization). Let x, y ≥ 0 ∈ Rn ordered non-increasingly, we say that y
weakly logarithmically majorizes x, denoted by y ≺w log x, if

k∏
j=1

yj ≤
k∏
j=1

xj, ∀1 ≤ k ≤ n. (3.9.21)

If we additionally require
∑n

j=1 yj =
∑n

j=1 xj , we say that y logarithmically majorizes x, denoted by
y ≺log x (this conception is less frequently used).

Remark 50. If x, y > 0, then y ≺w log x iff log y ≺w log x. Here log x, log y ∈ Rn is calculated
component-wise.
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Proposition 53. Let x, y > 0 and y ≺w log x, then for any function f : [0,∞) → R with t 7→ f(et)
convex, we have

f(y) ≺w f(x). (3.9.22)

Here, f(x) and f(y) are calculated component-wise.

Proof. By imitating the proof of Theorem 3.9.4.

We will see that the Weyl majorization theorem represents a quite important phenomenon of log-
majorization. To prove this result, our strategy is to realise the product of eigenvalues via a constructive
way. That is to consider the eigenvalue of the operators acting on an antisymmetric tensor product space.

Definition 3.9.6. v1, · · · , vk ∈ Cn, we define

v1 ∧ · · · ∧ vk :=
1√
k!

∑
σ∈Sk

sign(σ)vσ(1) ⊗ · · · ⊗ vσ(k) ∈
k∧
Cn. (3.9.23)

Here,
∧k Cn = Span{k-order antisymmetric tensors}, dim(

∧k Cn) =
(
n
k

)
. Moreover,

⟨v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk⟩ = det(⟨vj, wℓ⟩)kj,ℓ=1. (3.9.24)

We can define the orthogonal projection operator P∧ :
⊗k Cn →

∧k Cn as follows:

P∧(v1 ⊗ · · · ⊗ vk) =
1√
k!
v1 ∧ · · · ∧ vk, P 2

∧ = P∧ = P ∗
∧. (3.9.25)

We define an operator A∧k by its action:

A∧k(v1 ∧ · · · ∧ vk) = (Av1) ∧ · · · ∧ (Avk). (3.9.26)

Then it is easy to verify that

P∧A
∧kP∧ = A∧kP∧ :

k⊗
Cn →

k∧
Cn, (3.9.27)

(A∧k)∗ = (A∗)∧k, A∧kB∧k = (AB)∧k,
∣∣A∧k∣∣ = |A|∧k. (3.9.28)

Lemma 10. Let A ∈Mn(C), then we have

∥∥A∧k∥∥ =
k∏
j=1

λj(|A|), ∀1 ≤ k ≤ n. (3.9.29)

Remark 51. This naturally gives rise to the logarithmic majorization between the eigenvalues of A and
|A|. In some sense,

∥∥A∧k
∥∥ is the multiplicative version of trace.

Proof. Let vj be the eigenvector of |A| corresponding to λj(|A|), then we have

∣∣A∧k∣∣(vj1 ∧ · · · ∧ vjk) =
k∏
i=1

λji(|A|)vj1 ∧ · · · ∧ vjk . (3.9.30)



74 CHAPTER 3. TRACE INEQUALITIES

Thus, under the basis {vj1 ∧ · · · ∧ vjk}, |A|∧k is diagonalized and∥∥∥|A|∧k∥∥∥ =

∥∥∥∥∥diag

(
k∏
i=1

λji(|A|)

)∥∥∥∥∥⇒ sup
k∏
i=1

λji(|A|) =
k∏
j=1

λj(|A|). (3.9.31)

Thus we have ∥∥A∧k∥∥ =
∥∥∣∣A∧k∣∣∥∥ =

∥∥∥|A|∧k∥∥∥ =
k∏
j=1

λj(|A|). (3.9.32)

Theorem 3.9.7 (Weyl’s majorization theorem). Let A ∈Mn(C), then we have

k∏
j=1

|λj(A)| ≤
k∏
j=1

λj(|A|), ∀1 ≤ k ≤ n. (3.9.33)

Proof. Let λ be an eigenvalue of A with algebraic multiplicity mλ, then we have there exists a “cyclic
basis” {x1, · · · , xmλ

} such that Axj − λxj ∈ Span(x1, · · · , xj−1) (One may understand this by thinking
of the Jordan form). In particular, we have a linearly indepedent set {v1, · · · , vn} such that

Avj − λj(A)vj ∈ Span(v1, · · · , vj−1), ∀1 ≤ j ≤ n. (3.9.34)

Note that the antisymmetric tensor vanishes whenever two of the vectors coincide, thus w := Avj −
λj(A)vj does not contribute to the action of A∧k on the antisymmetric tensor product space. That is,

A∧k(v1 ∧ · · · ∧ vk) = (Av1) ∧ · · · ∧ (Avk) =
k∏
j=1

λj(A)(v1 ∧ · · · ∧ vk). (3.9.35)

Thus, by Lemma 10, we have

k∏
j=1

|λj(A)| ≤
∥∥A∧k∥∥ =

k∏
j=1

λj(|A|). (3.9.36)

Next, we can immediately apply the results of log-majorization to the Weyl majorization theorem.
This will give us the generalization of the Weyl inequality Theorem 3.6.6 and the stronger Golden-
Thompson inequality.

Proposition 54. Let A ∈ Mn(C), f is a increasing function on [0,∞) with t 7→ f(et) convex, then we
have f(|λ1(A)|)...

f(|λn(A)|)

 ≺w

f(λ1(|A|))...
f(λn(|A|))

. (3.9.37)

Corollary 8. We take f(t) = tα for α ≥ 1, then we have

k∑
j=1

|λj(A)|α ≤
k∑
j=1

λj(|A|)α, ∀1 ≤ k ≤ n. (3.9.38)
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Remark 52. This is a much stronger and more essential result than the original Weyl inequality Theo-
rem 3.6.6. However, this is only directly applicable in the finite-dimensional case.

Theorem 3.9.8 (Golden-Thompson inequality, formal version of Theorem 3.8.3). Let A,B ∈Mn(C), f
is increasing and f(et) is convex, then

f(eA+B) ≺w f
(
e

B+B∗
4 e

A+A∗
2 e

B+B∗
4

)
. (3.9.39)

Remark 53. By taking f = Id, we can obtain the original trace version of the Golden-Thompson in-
equality.

3.10 Araki-Lieb-Thirring inequality

We extend the weak majorization results of Weyl to a “parametrized case”. That is, we consider the trace
inequality of the following form

Tr
(
B

1
2AB

1
2

)
≤ Tr

(
(B

s
2AsB

s
2 )

1
s

)
. (3.10.1)

Theorem 3.10.1 (Furata inequality). Let A,B ≥ 0, 0 ≤ s ≤ 1, then we have

∥AsBs∥ ≤ ∥AB∥s. (3.10.2)

Proof. We denote
Λ = {s : ∥AsBs∥ ≤ ∥AB∥s}, (3.10.3)

we need to show that Λ is a convex set. It is easy to see that 0, 1 ∈ Λ. We take s, t ∈ Λ, then we want to

show that s+t
2

∈ Λ i.e.
∥∥∥A s+t

2 B
s+t
2

∥∥∥2 ≤ ∥AB∥s+t. Therefore,

LHS =
∥∥∥B s+t

2 A
s+t
2 B

s+t
2

∥∥∥ = r(B
s+t
2 As+tB

s+t
2 ) = r(As+tBs+t)

= r(BsAsAtBt) ≤ ∥BsAs∥
∥∥BtAt

∥∥ = ∥AB∥s+t = RHS.
(3.10.4)

Therefore, Λ is a convex set i.e. Λ = [0, 1].

To prove the Araki-Lieb-Thirring inequality, we first need to prove the following key lemma. Then
the Araki-Lieb-Thirring inequality follows readily via connection bewteen weak logarithmic majorization
and the weak majorization (see Proposition 53).

Lemma 11. A,B ≥ 0, s ≥ 1, then

B
1
2AB

1
2 ≺w log (B

s
2AsB

s
2 )

1
s . (3.10.5)

The main idea of the proof of this lemma is again using the structure of wedge product operators (like
in the proof of Weyl’s majorization theorem).
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Proof. We let Ys = B
s
2AsB

s
2 , then we need to show that

k∏
j=1

λj(B
1
2AB

1
2 ) ≤

k∏
j=1

λj(Y
1
s
s ), ∀1 ≤ k ≤ n. (3.10.6)

Note that λ(Y
1
s
s )s = λ(Ys), we consider the product of distinct eigenvalues of Ys. We consider the

k-wedge product of Ys

k∏
j=1

λj(Ys) =
∥∥Y ∧k

s

∥∥ =
∥∥∥[(A s

2B
s
2 )∗(A

s
2B

s
2 )
]∧k∥∥∥ =

∥∥∥[(A s
2B

s
2 )∧k

]∗ [
(A

s
2B

s
2 )∧k

]∥∥∥
=
∥∥(A s

2B
s
2 )∧k

∥∥2 = ∥∥(A s
2 )∧k(B

s
2 )∧k

∥∥2 = ∥∥(A∧k)
s
2 (B∧k)

s
2

∥∥2
Furata inequality

≥
∥∥(A∧k)

s
2 (B∧k)

s
2

∥∥2 = ∥∥∥(A∧k)
1
2 (B∧k)

1
2

∥∥∥2s = ∥∥Y ∧k
1

∥∥s ⇒ ∥∥Y ∧k
s

∥∥ 1
s ≥

∥∥Y ∧k
1

∥∥.
(3.10.7)

Therefore,
k∏
j=1

(λj(Ys))
1
s ≥

k∏
j=1

λj(Y1), ∀k. (3.10.8)

We note that Y1 = B
1
2AB

1
2 , thus we have

B
1
2AB

1
2 ≺w log

(
B

s
2AsB

s
2

) 1
s . (3.10.9)

Theorem 3.10.2 (Araki-Lieb-Thirring inequality). Let A,B ≥ 0, f is increasing and f(et) is convex,
then we have

f((B
1
2AB

1
2 )s) ≺w f(B

s
2AsB

s
2 ). (3.10.10)

Remark 54. The more “popular” version of the Araki-Lieb-Thirring inequality is the trace version:

Tr
(
B

1
2AB

1
2

)
≤ Tr

(
(B

s
2AsB

s
2 )

1
s

)
. (3.10.11)

As a remark of history, the original version of the Araki-Lieb-Thirring inequality (Lieb-Thirring inequal-
ity) relies on a different proof technique, which is based on the properties of analytic functions. The proof
based on the construction of wedge product operators in fact provides more structural information.

Corollary 9. Let α > 0, s ≥ 1, then we have

(B
1
2AB

1
2 )αs ≺w (B

s
2AsB

s
2 )α. (3.10.12)

In particular,
Tr
[
(B

1
2AB

1
2 )αs

]
≤ Tr

[
(B

s
2AsB

s
2 )α
]
. (3.10.13)

That is, s 7→ Tr
(
B

s
2AsB

s
2

) 1
s is increasing.

As an application, we show (1) a generalized Golden-Thompson inequality; (2) an entropic inequality.
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Theorem 3.10.3 (Generalized Golden-Thompson inequality). LetA,B be Hermitian matrices, then s 7→
Tr
[
(e

sB
2 esAe

sB
2 )
]

is increasing. In particular,

Tr eA+B ≤ Tr
[
(e

sB
2 esAe

sB
2 )

1
s

]
. (3.10.14)

Remark 55. In particular, if we take s→ 0, then we get the Lie-Trotter formula.

Theorem 3.10.4. Let A,B > 0, s > 0, then

1

s
Tr
(
A logB

s
2AB

s
2

)
≤ Tr(A logA+ A logB). (3.10.15)

Or equivalently, we have
1

s
Tr
(
A logB− s

2AsB− s
2

)
≤ H(A∥B). (3.10.16)

Proof. Without loss of generality, we let TrA = 1. By the Gibbs variational formula, we have

H(A∥eD) ≥ Tr(AX)− log Tr eX+D
Golden-Thompson

≥ Tr(AX)− log Tr
(
(e

sD
2 esXe

sD
2 )

1
s

)
(3.10.17)

Let X = 1
s
log
(
e−sD/2esXe−sD/2

)
. Then we have

H(A∥eD) ≥ 1

s
Tr
(
A log

(
e−sD/2esXe−sD/2

))
. (3.10.18)

Then the required result follows by taking D = − logB.

3.11 The convexity of some entropy functionals
The material in this section is mainly based on the work of Carlen and Lieb [CL08]. Specifically, we care
about the following types of functionals:

(A1, · · · , Am) 7→

∥∥∥∥∥∥
(

m∑
j=1

Apj

) 1
p

∥∥∥∥∥∥
q

; (3.11.1)

and
Γp,q(A) := Tr

(
(B∗ApB)

q
p

)
. (3.11.2)

Lemma 12. If 1 ≤ p ≤ 2, and q ≥ p, Γp,q is convex function.

Proof. Since A 7→ Ap is operator convex, so is A 7→ B∗ApB. Moreover, if we let r := q/p ≥ 1, then by
the variational formula of r-norm, we have

∥B∗ApB∥r = sup
∥Y ∥r′≤1,Y≥0

Tr(B∗ApBY ) (3.11.3)

Thus, as the supremum of a family of convex functions, Γp,q is convex.
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Lemma 13 (Young’s inequality). If α + β = 1, then αx
1
α + βy

1
β ≥ xαyβ for any x, y ≥ 0. Moreover, if

r > 1, a, b > 0, then we have
1

r
ar +

r − 1

r
br ≥ abr−1. (3.11.4)

Proposition 55. For r > 1, we have the following key observations:

Tr
(
(A∗A)

1
r

)
=

1

r
inf{Tr

(
A∗X1−rA

)
+ (r − 1)TrX : X > 0}. (3.11.5)

Similarly, for r < 1,

Tr
(
(A∗A)

1
r

)
=

1

r
sup{Tr

(
A∗X1−rA

)
+ (r − 1)TrX : X > 0}. (3.11.6)

Proof. By eq. (3.11.4) and the previous result Theorem 3.4.3 for Klein inequality, we have

Tr
(
(AA∗)

1
r

)
≤ 1

r
Tr
(
A∗X1−rA

)
+
r − 1

r
TrX. (3.11.7)

Proposition 56.

Γp,q(A) =
q

p
inf
X

{
Tr
(
A

p
2BX1− p

qB∗A
p
2

)
+

(
p

q
− 1

)
X : X > 0

}
(p > q); (3.11.8)

Γp,q(A) =
q

p
sup
X

{
Tr
(
A

p
2BX1− p

qB∗A
p
2

)
+

(
p

q
− 1

)
X : X > 0

}
(p < q). (3.11.9)

Proof. It follows readily from Proposition 55.

Lemma 14. Let f(x, y) be a jointly convex/concave function on I1 × I2, then g(x) = infy∈I2 f(x, y) is
convex/concave on I1.

Proof. Take x1, x2 ∈ I1 and λ ∈ (0, 1). For any ε > 0, there exists y1, y2 ∈ I2 such that f(x1, y1) ≤
g(x1) + ε, f(x2, y2) ≤ g(x2) + ε. Then we have

g(λx1 + (1− λ)x2)
by defn.
≤ f(λx1 + (1− λ)x2, λy1 + (1− λ)y2)

by joint convexity
≤ λf(x1, y1) + (1− λ)f(x2, y2)

≤ λg(x1) + (1− λ)g(x2) + ε.

(3.11.10)

Taking ε→ 0 on both sides yields the desired result readily.

Remark 56. This means that the convexity or concavity is somewhat “stable” under taking infimum or
supremum. That is why the variational formula technique as we have established in Proposition 55 and
Proposition 56 is useful in proving the convexity of these entropy functionals. In the next reading section
section 3.12, we will revisit this strategy again.

Theorem 3.11.1. (1) If 1 ≤ p ≤ 2, q ≥ 1, then Γp,q is convex;

(2) If 0 < p ≤ q ≤ 1, then Γp,q is concave;



3.11. THE CONVEXITY OF SOME ENTROPY FUNCTIONALS 79

(3) If p > 2 and p ̸= 1, then Γp,q is neither convex nor concave.

Proof. For (1), by Lieb’s concavity Proposition 50 (see also example 12), (A,X) 7→ Tr
(
BX1− p

qB∗Ap
)

is jointly convex for 1 ≤ p ≤ 2, −1 ≤ 1− p
q
≤ 0 and p+ 1− p

q
≥ 1. By Lemma 14, we have Γp,q(A) is

convex.
For (2), if 0 < p ≤ q ≤ 1, 0 < 1 − p

q
≤ 1, wev have 0 ≤ 1 − p

q
+ p ≤ 1. By Lieb’s concavity,

we have (A,X) 7→ Tr
(
BX1− p

qB∗Ap
)

is jointly concave. By Lemma 14, we have Γp,q(A) is concave. If

0 < q ≤ p ≤ 1, then the result is trivial by A 7→ Ap is concave and A 7→ A
q
p is concave. For (3), the

proof is based on Taylor expansion. We let

B =

(
1 0
1 0

)
, A =

(
tX

Y

)
. (3.11.11)

Then direct calculation shows that

Γp,q(A) = Tr
(
(tpXp + Y p)

q
p

)
. (3.11.12)

By Taylor expansion, we have

Γp,q(A) = Tr(Y q) +
q

p
Tr
(
Y q−pXp

)
tp +O(t2p). (3.11.13)

Note that we have taken the advantage of expanding w.r.t. tp and the commutativativity of the trace. We
replace X with A1, A2 and A1+A2

2
, we find

1

2
Γp,q(A1) +

1

2
Γp,q(A2)− Γp,q

(
A1 + A2

2

)
=
q

p

(
1

2
Tr
(
Y q−pAp1

)
+

1

2
Tr
(
Y q−pAp2

)
− Tr

[
Y q−p

(
A1 + A2

2

)p]
tp
)
+O(t2p).

(3.11.14)

That is,

1

2
Tr
[
(tpAp1 + Y p)

q
p

]
+

1

2
Tr
[
(tpAp2 + Y p)

q
p

]
− Tr

[(
tp
A1 + A2

2

p

+ Y p

) q
p

]

=
q

p

(
1

2
Tr
(
Y q−pAp1

)
+

1

2
Tr
(
Y q−pAp2

)
− Tr

[
Y q−p

(
A1 + A2

2

)p]
tp
)
+O(t2p).

(3.11.15)

Since A 7→ Ap is not operator convex, p > 2, thus there exists v ∈ Cn, ∥v∥ = 1, such that

1

2
⟨Ap1v, v⟩+

1

2
⟨Ap2v, v⟩ − ⟨

(
A1 + A2

2

)p
v, v⟩ < 0. (3.11.16)

However, take Y to be a projection to Cv, then the right hand side of eq. (3.11.15) is nothing other than
the inner product terms in eq. (3.11.16). This shows that the left hand side of eq. (3.11.15) is negative,
which implies that Γp,q cannot be convex for such p and q. Similarly we can show that Γp,q cannot be
concave.
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Lemma 15. Γp,q and Γ
1
q
p,q have the same convexity properties.

Proof. The proof is based on the fact that, when f is homogeneous with degree 1, then f is convex if and
only if {x ∈ Dom(f) : f(x) ≤ 1} is a convex set.

Corollary 10. (A1, · · · , Am) 7→
∥∥∥∥(∑m

j=1A
p
j

) 1
p

∥∥∥∥
q

is jointly convex for 1 ≤ p ≤ 2, q ≥ 1; and is jointly

concave for 0 < p, q ≤ 1.

Proof. We consider diag(A1, · · · , Am) and use Theorem 3.11.1.

Remark 57 (Remark of history). Many lines of investigation of such types of functional inequalities
can be traced back to, again, the WYK hypothesis, which drew attention to the concavity of A 7→
Tr(ApXA1−pX∗). The physical motivation is: some states are easier to measure than others; if a density
matrix ρ commutes with a conserved quantity (say the energy) then it is easy to measure, and otherwise
not. Thus, while the von Neuman entropy of any pure state ρ is zero, some pure states have a higher
information content than others – namely those that are not functions of the conserved quantities, such
as the Wigner–Yanase skew information I(ρ) = TrX2ρ− Tr ρ

1
2Kρ

1
2K.

3.12 Reading: How far can we go with Lieb’s concavity and Ando’s
convexity?

We consider a very important family of entropy functionals: the α−z Rényi entropy. We define the α−z
Rényi entropy as

Hα,z(ρ∥σ) :=
1

α− 1
log Tr

(
σ

1−α
2z ρ

α
z σ

1−α
2z

)z
, |α| > 1, z > 0. (3.12.1)

In particular, we define

• z = 1: α-Rényi entropy Hα(ρ∥σ) = 1
α−1

log Tr(σ1−αρα);

• z = α: sandwiched α-Rényi entropy H̃α(ρ∥σ) = 1
α−1

Tr
(
σ

1−α
2α ρ

α
ασ

1−α
2α

)α
.

In fact there are many other types of entropy functionals with quite complicated connections among them
(see fig. 3.1).

We are interested in the “monotonicity” or data-processing inequality of the relative entropy func-
tional. That is, for any quantum channel Φ, whether we have

Hα,z(Φ(ρ)∥Φ(σ)) ≤ Hα,z(ρ∥σ), ∀ρ, σ ∈ D(H) being density matrices. (3.12.2)

The standard argument shows that it is essentially equivalent to some Lieb/Ando-type convexity.
Specifically,

Example 13. Set

Ψ(A,B) = Tr
(
B

q
2ApB

q
2

) 1
p+q
, A,B ∈ H>0

n , (3.12.3)

with
p :=

α

z
, q :=

1− α

z
(3.12.4)

Then the DPI holds for the α− z Rényi entropy Hα,z if and only if one of the following holds



3.12. READING: HOW FAR CAN WE GO WITH LIEB’S CONCAVITY AND ANDO’S CONVEXITY?81

WELCOME TO THE ENTROPY ZOO

No guarantee of correctness or completeness. No liability if the proof in your paper is wrong because you believed this diagram. Comments and suggestions are greatly welcome at pfaist@phys.ethz.ch.

by Philippe Faist, ETHZ

LEGEND

equivalent measures

dual measures

i.i.d. limit

special case

parent quantity

up to            terms

smoothing

entropy

measures

parent relative

entropies

operational
task

COMMON CONSTRUCTIONS

Duality:

Parameter ranges:

FOOTNOTES
†Denotes H0 as Hmax and uses trace distance smoothing

‡Termed there “alternative min/max entropy”
*Termed there “min-relative entropy” and denoted by Dmin

§Not sure. Inequality at least I think. Ask Frédéric Dupuis.
˚Called            ;     normalization and    parameter meaning vary

¶De�ned there using the marginal of     instead of the optimization on    .
þUses notation                           for                        and                           (same for       )

REFERENCES
D. Petz, Rep. Math. Phys. 23 57 (1986)
R. Renner, Ph.D., ETHZ (2005), quant-ph/0512258
N. Datta, IEEE TIT (2009), 0803.2770
R. König et al., IEEE TIT (2009), 0807.1338
M. Tomamichel et al., IEEE TIT (2009),  0811.1221
F. Buscemi et al., IEEE TIT (2010), 0902.0158
M. Tomamichel et al., IEEE TIT (2010), 0907.5238
F. Brandão et al., IEEE TIT (2011), 0905.2673
M. Tomamichel et al., IEEE TIT (2011), 1002.2436
L. Wang et al., PRL (2012), 1007.5456

M. Tomamichel, Ph.D., ETHZ (2012), 1203.2142
A. Vitanov et al., IEEE TIT (2013), 1205.5231
M. Tomamichel et al., IEEE TIT (2013), 1208.1478
F. Dupuis et al., Proc. XVII ICMP (2013), 1211.3141
S. Biegi, JMP (2013), 1306.5920
M. Müller-Lennert et al., JMP (2013), 1306.3142
N. Datta et al., arXiv:1310.7178v2 (2013)
M. Wilde et al., CMP (2014), 1306.1586
M. Tomamichel et al., JMP (2014), 1311.3887
S. Lin et al., QIP (2015), 1408.6897

MT+ 2009, MT+ 2014þ MML+2013, MT+ 2014þ

COLLISION ENTROPY

RR
 2

00
5

M
T+

 2
01

1‡

MIN ENTROPY
RR

 2
00

5†

M
T+

 2
01

0
M

T 
20

12

MT+ 2014þ

MAX ENTROPY

M
T+

 2
01

0
M

T 
20

12

RR 2005†, MT+ 2011‡

MT+ 2014þ

FD+ 2013

i.i.d.

FD+ 2013

HYPOTHESIS TESTING
RELATIVE ENTROPY

FD+ 2013, 
LW+ 2012˚, 
MT+ 2012˚,

MT+ 2010

MT+ 2010

MT+ 2011

MT+ 2011 MT+ 2011

DUAL
MT+ 2011

M
T+ 2011

HYPOTHESIS TESTING
ENTROPY

MT+ 2012, 
FD+ 2013¶

AV+ 2013

FD
+ 2013

VON NEUMANN

??§

AV
+ 

20
13

MT 2012

FD+ 2013

MIN RELATIVE ENTROPY

FD
+ 

20
13

RÉNYI-ZERO RELATIVE ENTROPY

FB+ 2011*, LW+ 2012˚, MT+ 2012˚

“operator
smoothed”

N
D

 2
00

9*
, F

B+
 2

01
0*

,
FB

+ 
20

11
*

RÉNYI RELATIVE ENTROPY
DP 1986,
ND 2009,

ML+ 2013,
MT+ 2014,

MW+ 2014,
SL+ 2015,

“SANDWICHED” RÉNYI
RELATIVE ENTROPY

MML+2013,
MW+ 2014,
SB 2013,
MT+ 2014

ND+ 2013, SL+ 2015, MT+ 2014

α-z RELATIVE RÉNYI ENTROPY

RELATIVE ENTROPY

ND+ 2013
ND+ 2013

MML+ 2013

MML+ 2013,

MW+ 2014

ND+ 2013,
SL+ 2015

MT+ 2014

MT+ 2014

M
M

L+
 2

01
3

MT+ 2014

MT+ 2014

MT+ 2014

MT+ 2014

MT+ 2014,
MML+ 2013

SB 2013

MT+ 2014

MT+ 2014

MT+ 2014

MML+ 2013

MT+ 2014

M
T+

 2
01

1

hypothesis testing 
(asymptotic error rates)

hypothesis testing 
(tradeo� Type I & II errors)

thermodynamic 
state preparation

randomness 
extraction

 

data compression

 

state merging

thermodynamic 
erasure

decoupling

recoverability
N

D
 2

00
9

MAX RELATIVE ENTROPY

N
D

 2
00

9

Figure 3.1: Welcome to the entropy zoo by Philippe Faist (ETH-Zürich)

• α < 1 and Ψ is jointly concave;

• α > 1 and Ψ is jointly convex.

This is one of the very important motivation of the study of Lieb/Ando type convexity properties.
Before [Zha20], the known results for data-processing inequalities are summarized in fig. 3.2

The Carlen-Frank-Lieb conjecture is to ask whether we have the necessary and sufficient conditions.

Ψp,q,s(A,B) = Tr
(
B

q
2X∗ApXB

q
2

)s
= Tr

∣∣∣A p
2XB

q
2

∣∣∣2s, (3.12.5)

is jointly convex/concave for all X ∈ H>0
n . The main result in [Zha20] is

• Ψp,q,s is jointly concave iff 0 ≤ s ≤ 1
p+q

, 0 ≤ p, q ≤ 1;

• Ψp,q,s is jointly convex iff s ≥ 1
p+q

, 1 ≤ p ≤ 2,−1 ≤ q ≤ 0 or s ≥ 1
p+q

, 1 ≤ q ≤ 2,−1 ≤ p ≤ 0 or
s ≥ 0, −1 ≤ p, q ≤ 0.

The building blocks are very fundamental:

1. A special case of Lieb concavity For any 0 < p < 1, Ψp,1−p,1(A,B) = Tr(X∗ApXB1−p) is
jointly concave if X ∈ H>0

n ;

2. A special case of Ando convexity For any −1 < p < 0, Ψp,1−p,1(A,B) is jointly convex if
X ∈ H>0

n ;

3. A quite well-known fact For any t > 0, A 7→ TrA−t is convex.
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Figure 3.2: Known results of DPI for Hα,z before [Zha20]

Besides the building blocks listed above, the key technique to prove the results is actually the variational
formula approach in section 3.11 just like the proof of the results of Carlen and Lieb [CL08]. We begin
with a “toy example” for the purpose of warm-up.

Example 14. Let ψα,β(x, y) = xαyβ , show that it is jointly concave for 0 < α, β < 1 and α + β ≤ 1.

Lemma 16. If f(·, y) is concave for each y, then miny f(·, y) is concave.

Lemma 17. By Young’s inequality, we have

ab ≤ 1

p
ap +

1

q
bq,

1

p
+

1

q
= 1. (3.12.6)

By taking (a, b) 7→ (ac, bc−1), we have for any c > 0,

ab = ac · bc−1 ≤ 1

p
(ac)p +

1

q
(bc−1)q,

1

p
+

1

q
= 1. (3.12.7)

Then we have the variational formula for the product ab

ab = min
c>0

{
1

p
(ac)p +

1

q
(bc−1)q

}
. (3.12.8)

This gives readily

xαyβ = min
z>0

{
α

α + β
(xz

1
α )α+β +

β

α + β
(yz−

1
β )α+β

}
,

1

α
+

1

β
= 1 (3.12.9)

for 0 < α, β < 1 and α + β ≤ 1. This shows that ψα,β is jointly concave.
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Note that the p-functional also admits the Hölder inequality, thus the non-commutative version also
holds. Thus we have

Lemma 18. For X, Y ∈ H>0
n , ri > 0, 1

r0
= 1

r1
+ 1

r2
, we have

Tr |XY |r0 := min
Z∈H>0

n

{
r0
r1

Tr |XZ|r1 + r0
r2

Tr
∣∣Y Z−1

∣∣r2} , (3.12.10)

Tr |XY |r1 := max
Z∈H>0

n

{
r1
r0

Tr |XZ|r0 − r1
r2

Tr
∣∣Y −1Z

∣∣r2} . (3.12.11)

Next we show how we can reduce the p, q > 0 case to the p = 0 or q = 0 case. This can be easily done
by the following variational treatment:

Ψp,q,s(A,B) = min
Z∈H>0

n

{
p

p+ q
Tr
∣∣∣A p

2KZ
∣∣∣ 2λp +

q

p+ q
Tr
∣∣∣Z−1B

q
2

∣∣∣ 2λq }

= min
Z∈H>0

n

 p

p+ q
Tr(Z∗K∗AKZ)

λ
p︸ ︷︷ ︸

q=0 case

+
q

p+ q
Tr
(
Z−1BqZ∗−1

)λ
q︸ ︷︷ ︸

p=0 case


(3.12.12)

The p = 0 or q = 0 case is nothing but the special case of Lieb concavity (building block 1) abd the
special case of Ando convexity (Note that they also in some sense follow from some types of variatial
formulae).

3.13 Exercise III
Exercise 17. Suppose that f : Dom(f) → R is an increasing convex function with f(0) ≤ 0 and
A1, · · · , Am ∈ Hn with Sp(Aj) ⊂ Dom(f) for j = 1, · · · ,m. Suppose that V1, · · · , Vm ∈ Mn(C) with∑m

j=1 V
∗
j Vj = I , then we have ∃ a unitary matrix U ∈Mn(C) such that

f

(
m∑
j=1

V ∗
j AjVj

)
≤ U∗

(
n∑
j=1

V ∗
j f(Aj)Vj

)
U. (3.13.1)

Proof. We let

X̃ =

V1 0 · · · 0
...

... . . . ...
Vm 0 · · · 0

 ∈Mmn(C), Ã =

A1

. . .
Am

 ∈Mmn(C). (3.13.2)

Then by Proposition 35 we have

λk(f(X̃
∗ÃX̃)) ≤ λk(X̃

∗f(Ã)X̃), ∀1 ≤ k ≤ mn. (3.13.3)

It is easy for us to calculate that

f(X̃∗ÃX̃) =

f
(∑m

j=1 V
∗
j AjVj

)
0 · · · 0

...
... . . . ...

0 0 · · · 0

, X̃∗f(Ã)X̃ =


∑m

j=1 V
∗
j f(Aj)Vj 0 · · · 0
...

... . . . ...
0 0 · · · 0

.
(3.13.4)
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Therefore we have

λk

[
f

(
m∑
j=1

V ∗
j AjVj

)]
≤ λk

[
m∑
j=1

V ∗
j f(Aj)Vj

]
, ∀1 ≤ k ≤ n. (3.13.5)

Therefore, there exists some unitary matrix U ∈Mn(C) such that

f

(
m∑
j=1

V ∗
j AjVj

)
≤ U∗

(
m∑
j=1

V ∗
j f(Aj)Vj

)
U. (3.13.6)

Exercise 18 (Hadamard inequality). Suppose that A = (ajk)
n
j,k=1 ∈ Mn(R) is a positive semi-definite

matrix, then we have

det(A) ≤
n∏
j=1

ajj, ∀1 ≤ j ≤ n. (3.13.7)

Proof. Let A = LL∗ where L is a lower-triangular matrix, then

ajj =
n∑
k=1

|Ljk|2 ≥ |Ljj|2, ∀1 ≤ j ≤ n. (3.13.8)

On the other hand

det(A) = det(LL∗) = |det(L)|2 =

(
n∏
j=1

|Ljj|

)2

=
n∏
j=1

|Ljj|2 ≤
n∏
j=1

ajj (3.13.9)

which is the desired result.

Exercise 19. Suppose A,B ∈Mn(C) are Hermitian matrices with A ≺ B, f is an convex function, then

Tr f(A) ≤ Tr f(B). (3.13.10)

Proof. Since λj(A) is majorized by λj(B) and f is convex, by the Karamata’s inequality we have

n∑
j=1

f(λj(A)) ≤
n∑
j=1

f(λj(B)). (3.13.11)

That is Tr f(A) ≤ Tr f(B).

Exercise 20. A,B ∈ H>0
n , t > 0, then

1

t
Tr
(
B −B1−tAt

)
≤ H(B||A) ≤ 1

t
Tr
(
B1+tA−t −B

)
. (3.13.12)

Proof. Let g(t) = Tr(B1+tA−t −B), then we have g′(t) = Tr(B1+tA−t logB −B1+tA−t logA), g′′(t) =
Tr(B1+tA−t(logB − logA)2). Since A,B > 0, (logB − logA)2 ≥ 0, we have g′′(t) ≥ 0. Therefore,

g(t)− g(0) = tg′(0) +
1

2
g′′(t0)t

2 ≥ tg′(0). (3.13.13)
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Note that g′(0) = limt→0+
Tr(B1+tA−t−B)

t
= Tr(B logB −B logA), therefore we have

Tr(B logB −B logA) ≤ g(t)− g(0)

t
=

1

t
Tr
(
B1+tA−t −B

)
. (3.13.14)

Similarly, let g̃(t) = Tr(B −B1−tAt), we have g̃′(t) = Tr(B1−tAt logB −B1−tAt logA), g̃′′(t) =
−Tr(B1−tAt(logA− logB)2). Since A,B > 0, (logA− logB)2 ≤ 0, we have g̃′′(t) ≤ 0. Therefore,

g̃(t)− g̃(0) ≤ tg̃′(0). (3.13.15)

Therefore,

Tr(B logB −B logA) ≥ g̃(t)− g̃(0)

t
=

1

t
Tr
(
B −B1−tAt

)
. (3.13.16)

Exercise 21. Suppose that A,B ∈Mn(C), show that

eA+B = lim
m→∞

(
e

A
2m e

B
m e

A
2m

)m
. (3.13.17)

Proof. Let Xm = e
A
2m e

B
m e

A
2m , Ym = e

A+B
m . Then we have

∥Xm
m − Y m

m ∥ ≤ m∥Xm − Ym∥max(∥Xm∥, ∥Ym∥)m−1 (by factorization of Am −Bm). (3.13.18)

We calculate

• ∥Xm∥ ≤ e
∥A∥
2m e

∥B∥
m e

∥A∥
2m = e

∥A∥+∥B∥
2 ; ∥Ym∥ ≤ e

∥A+B∥
m ≤ e

∥A∥+∥B∥
m .

•

Xm =

(
I +

A

2m
+

A2

8m2
+ o

(
1

m2

))(
I +

B

m
+

B2

2m2
+ o

(
1

m2

))
(
I +

A

2m
+

A2

8m2
+ o

(
1

m2

))
= I +

A+B

m
+
AB +BA

2m2
+

A2

4m2
+

A2

4m2
+

B2

2m2
+ o

(
1

m2

)
= I +

A+B

m
+
A2 +B2 + AB +BA

2m2
+ o

(
1

m2

)
= I +

A+B

m
+

(A+B)2

2m2
+ o

(
1

m2

)
.

(3.13.19)

Moreover

Ym = I +
A+B

m
+

(A+B)2

2m2
+ o

(
1

m2

)
(3.13.20)

• Thus we have

∥Xm − Y m∥ ≤ m · o
(

1

m2

)
exp(∥A∥+ ∥B∥) ≲ 1

m2
. (3.13.21)

Then, the required result follows readily by taking m→ ∞.
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Exercise 22. Suppose A1, · · · , Ak ∈Mn(C), show that

eA1+···+Ak = lim
m→∞

(
e

A1
m e

A2
m · · · e

Ak
m

)m
. (3.13.22)

Proof. We denote
Xm = e

A1
m e

A2
m · · · e

Ak
m , Ym = e

A1+···+Ak
m . (3.13.23)

Then we have

∥Xm
m − Y m

m ∥2 ≤ m∥Xm − Ym∥2max(∥Xm∥2, ∥Ym∥2)
m−1(by factorization of Am −Bm). (3.13.24)

Note that
∥Xm∥2 ≤ e

∥A1∥+···+∥Ak∥
m ,

∥Ym∥2 ≤ e
∥A1+···+Ak∥

m ≤ e
∥A1∥+···+∥Ak∥

m .
(3.13.25)

Thus we have
max(∥Xm∥2, ∥Ym∥2)

m−1 ≤ e
∥A1∥+···+∥Ak∥

m
(m−1) ≤ e∥A1∥+···+∥Ak∥. (3.13.26)

Moreover

Xm =

(
I +

A1

m
+

A2
1

2m2
+ o

(
1

m2

))
· · ·
(
I +

Ak
m

+
A2
k

2m2
+ o

(
1

m2

))
= I +

A1 + · · ·+ Ak
m

+
k∑
j=1

A2
j

2m2
+

∑
1≤j<l≤k

AjAl
m2

+ o

(
1

m2

)
= I +

A1 + · · ·+ Ak
m

+
(A1 + · · ·+ Ak)

2

2m2
+

∑
1≤j<l≤k

[Aj, Al]

2m2
+ o

(
1

m2

)
.

(3.13.27)

Ym = I +
A1 + · · ·+ Ak

m
+

(A1 + · · ·+ Ak)
2

2m2
+ o

(
1

m2

)
. (3.13.28)

Thus we have

∥Xm − Ym∥2 ≤ me∥A1∥+···+∥Ak∥ ·

(
1

2m2

∑
1≤j<l≤k

∥[Aj, Al]∥2 + o

(
1

m2

))
≲

1

m
. (3.13.29)

Thus the required result follows by taking m→ ∞.

Exercise 23. Suppose that A ∈Mn(C), show that det eA = eTrA.

Proof. We can show this by direct calculation for Jordan blocks. In fact, we can give another stronger
result

Lemma 19. Let A : I →Mn(C) be a operator valued continuous function and assume that the operator
valued C1 function Φ(t) solves the following equation

d

dt
X = A(t)X, (3.13.30)

then detΦ(t) solves
d

dt
detΦ = TrA(t) detΦ, ∀t ∈ I. (3.13.31)
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Proof of the lemma. Without loss of generality, we assume that Φ(t)−1 exists for any t ∈ I , since other-
wise there exists t1 and c1, · · · , cn ∈ C such that ψ(t) := c1Φ1(t) + · · · + cnΦn(t) satisfies ψ(t1) = 0.
Note that ψ : I → Cn solves the ODE

d

dt
x = A(t)x, (3.13.32)

thus by the uniqueness of the solution we have ψ(t) ≡ 0 on I . Thus we have Φ(t) is not invertible for
any t ∈ I thus detΦ ≡ 0, which proves the conclusion. In the rest of our proof, we assume that Φ(t) is
invertible for any t ∈ I . Let Φ∗(t) be the adjugate matrix of Φ(t), then we have

Φ∗(t) = detΦ(t)Φ(t)−1, ∀t ∈ I. (3.13.33)

Here the adjugate matrix is defined as the matrix whose (j, i)-entry is the (i, j)-cofactor of Φ(t). By the
expansion of the determinant, we have

d

dt
detΦ = lim

ϵ→0

detΦ(t+ ϵ)− detΦ(t)

ϵ

=
∑
σ∈Sn

(−1)sgn(σ) lim
ϵ→0

∏n
k=1Φk,σ(k)(t+ ε)−

∏n
k=1 Φk,σ(k)(t)

ϵ

=
∑
σ∈Sn

(−1)sgn(σ)
n∑
k=1

Φ′
k,σ(k)(t)

∏
j ̸=k

Φj,σ(j)(t)

=
∑
k,ℓ

Φ′
k,ℓ(t)Φ

∗
k,ℓ(t) =

∑
k,ℓ

detΦ(t)Φ′
k,ℓ(t)[Φ

−1(t)]ℓ,k = detΦ(t) Tr
(
Φ′(t)Φ−1(t)

)
= detΦ(t) Tr

(
A(t)Φ(t)Φ(t)−1

)
= detΦ(t) TrA(t).

(3.13.34)

In particular, we take Φi(t) = etAei for A ∈ Mn(C) and then Φ(t) = etAI = etA, thus we have
d
dt
det etA = TrA det etA. Then we know that both

φ1(t) = det etA and φ2(t) = etTrA (3.13.35)

are solutions to {
d
dt
x = Tr(A)x,

x(0) = 1,
(3.13.36)

which implies that φ1(t) = φ2(t) for any t ∈ I . Thus we have det etA = etTrA for any t ∈ I . In
particular, we have det eA = eTrA.

Exercise 24. Suppose that X ∈Mn(C) is Hermitian and β > 0, show that

Tr(DX)− 1

β
H(D) ≥ − 1

β
log Tr

(
e−βX

)
. (3.13.37)

The equality holds iff D is the Gibbs state i.e. D = e−βX

Tr(e−βX)
.
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Proof. By the Gibbs variational formula Theorem 3.5.2, we have

log Tr e−βX = sup
D̃ density matrix

{Tr
(
−βXD̃

)
−H(D̃)} = sup

D̃ density matrix

{−β Tr
(
XD̃

)
−H(D̃)}

≥ −β Tr(XD)−H(D)

(3.13.38)

for density matrix D. Moreover, the equality holds if and only if

D =
e−βX

Tr(e−βX)
. (3.13.39)

Exercise 25. Suppose A,B ∈Mn(C), show that

exp

(
A B

A

)
=

(
exp(A)

∫ 1

0
etABe(1−t)Adt
exp(A)

)
(3.13.40)

Proof. We claim (
A B

A

)m
=

(
Am Cm

Am

)
, Cm =

m−1∑
j=0

AjBAm−1−j. (3.13.41)

We can show this by induction. In fact, it follows readily from(
Am Cm

Am

)(
A B

A

)
=

(
Am+1 AmB + CmA

AmA

)
=

(
Am+1 Cm+1

Am+1

)
. (3.13.42)

We denote M =

(
A B

A

)
, then we have

expM =
∞∑
m=0

Mm

m!
=

∞∑
m=0

1

m!

(
Am Cm

Am

)
=

(∑∞
m=0

Am

m!

∑∞
m=0

Cm

m!∑∞
m=0

Am

m!

)
=

(
eA

∫ 1

0
etABe(1−t)Adt

eA

)
.

(3.13.43)
That is because∫ 1

0

etABe(1−t)Adt =
∞∑

m,l=0

(∫ 1

0

tm(1− t)ldt

)
AmBAl

m!l!

=
∞∑

m,l=0

Γ(m+ 1)Γ(l + 1)

Γ(m+ l + 2)

AmBAl

Γ(m+ 1)Γ(l + 1)

=
∞∑
k=0

∑
m+l=k

AmBAl

(k + 1)!

= (change the dummy variable)
∞∑
m=0

m−1∑
j=0

AjBAm−j

m!
=

∞∑
m=0

Cm

m!
.

(3.13.44)
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Exercise 26. Suppose that A,B ∈Mn(C) are Hermitian matrices, show that∣∣Tr(eA+iB
)∣∣ ≤ Tr

(
eA
)
. (3.13.45)

Proof. By Golden-Thompson inequality, we have

∣∣Tr eA+iB
∣∣ ≤ Tr

(
e

A+A†
2 e

iB+(iB)†
2

)
= Tr

(
eAe0

)
≤ Tr eA. (3.13.46)

Exercise 27. Suppose that A,B ∈Mn(C). Show that

∥∥eA+B − (eA/meB/m)m
∥∥
2
≤ 1

2m
∥[A,B]∥2 exp(∥A∥2 + ∥B∥2). (3.13.47)

Proof. We denote
Xm = e

A
m e

B
m , Ym = e

A+B
m . (3.13.48)

From the proof of Lemma 7, we have

Xm − Ym =
[A,B]

2m2
+ o

(
1

m2

)
. (3.13.49)

∥Xm
m − Y m

m ∥ ≤ m∥Xm − Ym∥ exp(∥A∥+ ∥B∥) (3.13.50)

We plug eq. (3.13.49) into eq. (3.13.50), we have∥∥eA+B − (eA/meB/m)m
∥∥ = ∥Xm

m − Y m
m ∥ ≤ 1

2m
∥[A,B]∥2 exp(∥A∥+ ∥B∥). (3.13.51)
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Chapter 4

Completely Positive Maps

4.1 Overview
Definition 4.1.1. Let Φ :Mm(C) →Mn(C) be a linear map, we say:

• Φ is bounded, if sup∥A∥=1 ∥Φ(A)∥ <∞. We denote ∥Φ∥ = sup∥A∥=1 ∥Φ(A)∥.

• Φ is positive, if Φ(A) ≥ 0 for any A ≥ 0.

• Φ is unital, if Φ(I) = I .

• Φ is trace-preserving, if TrΦ(A) = TrA for any A ∈Mm(C).

• Φ is contractive, if ∥Φ(A)∥ ≤ ∥A∥ for any A ∈Mm(C) i.e. ∥Φ∥ ≤ 1.

Example 15. Φ(A) = Tr(A)I is positive.

Example 16. X ∈Mm,n(C), Φ(A) = X∗AX is positive. ∥Φ∥ = ∥X∥2.
Φ is unital ⇐⇒ X∗X = I; Φ is trace-preserving ⇐⇒ XX∗ = I .

Example 17. Φ(A) = AT is positive, ∥Φ∥ = 1.

Proposition 57. Φ :Mm(C) →Mn(C) is positive, then

∥Φ∥ ≤ 2∥Φ(I)∥. (4.1.1)

Remark 58. In fact if we assume that Φ is positive, then we have ∥Φ∥ = ∥Φ(I)∥, but the proof is very
complicated, as we will see in the discusssion of von Neuman inequality (4.8.4).

Proof. In fact, we have for any A, A = ReA+ i ImA with ReA, ImA ≥ 0, thus we have

Φ(A) = Φ(ReA) + iΦ(ImA), Φ(ReA),Φ(ImA) ≥ 0 by Φ is positive. (4.1.2)

Thus we have
Φ(A)∗ = Φ(ReA)− iΦ(ImA) = Φ(A∗). (4.1.3)

Let A be a Hermitian matrix, then we have

−∥A∥I ≤ A ≤ ∥A∥I, (4.1.4)

91
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which means that Φ(I) can be viewed as the largest support that can be achieved by Φ. Thus we have

∥Φ(A)∥ ≤ ∥A∥∥Φ(I)∥. (4.1.5)

Then we assume that A is an arbitrary matrix, then we have

∥Φ(A)∥ =

∥∥∥∥Φ(A+ A∗

2

)
+ Φ

(
iA− iA∗

2i

)∥∥∥∥ ≤ 2∥A∥∥Φ(I)∥ ⇒ ∥Φ∥ ≤ 2∥Φ(I)∥. (4.1.6)

Definition 4.1.2. Φ : Mm(C) → Mn(C). ℓ ∈ N, idℓ ⊗ Φ : Mℓ(C) ⊗Mm(C) → Mℓ(C) ⊗Mn(C) is
defined as (using the block matrix form)

(idℓ ⊗ Φ)((Aj,k)
ℓ
j,k=1) = (Φ(Aj,k))

ℓ
j,k=1. (4.1.7)

This is because, we actually have

(Aj,k)
ℓ
j,k=1 =

ℓ∑
j,k=1

Ej,k ⊗ Aj,k, (4.1.8)

thus,

(idℓ ⊗ Φ)((Aj,k)
ℓ
j,k=1) =

ℓ∑
j,k=1

Ej,k ⊗ Φ(Aj,k) = (Φ(Aj,k))
ℓ
j,k=1. (4.1.9)

We define:

• If idℓ ⊗ Φ is positive, then we say Φ is ℓ-positive.

• If idℓ ⊗ Φ is positive for any ℓ ∈ N, then we say Φ is completely positive.

• If supℓ∈N ∥idℓ ⊗ Φ∥ <∞, then we say Φ is completely bounded. We denote ∥Φ∥cb = supℓ∈N ∥idℓ ⊗ Φ∥.
It is easy to see that ∥Φ∥cb ≥ ∥Φ∥.

• If ∥Φ∥cb ≤ 1, we say that Φ is completely contractive.

Example 18. • Φ(A) = Tr(A)I is completely positive.

• Φ(A) = X∗AX is completely positive.

• If Ψ,Φ are completely positive, then Ψ+ Φ, aΨ(a > 0),Ψ ◦ Φ is completely positive.

• Φ(A) = AT is not completely positive. In fact,

(id2 ⊗ Φ)

(
E11 E12

E21 E22

)
=

(
ET

11 ET
12

ET
21 ET

22

)
=

(
E11 E21

E12 E22

)
=

(
1
0 1
1 0

1

)
. ̸≥ 0. (4.1.10)

However,
(
E11 E12

E21 E22

)
=

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
itself is a rank-1 projection matrix, thus it is positive. There-

fore, Φ is not 2-positive.
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Proposition 58. Φ :Mn(C) →Mn(C) is completely positive, then ∥Φ∥cb = ∥Φ∥ = ∥Φ(I)∥.

Proof. We have ∥Φ(I)∥ ≤ ∥Φ∥ ≤ ∥Φ∥cb holds by definition. We only need to show the reverse inequality
∥Φ∥cb ≤ ∥Φ∥.

We take A ∈Mℓ(C)⊗Mn(C) and ∥A∥ ≤ 1, then we have

M =

(
I A
A∗ I

)
≥
(
I A
A∗ A∗A

)
=

(
I 0
A∗ 0

)(
I A
0 0

)
≥ 0. (4.1.11)

Thus we have

(id2ℓ ⊗ Φ)(M) = [id2 ⊗ (idℓ ⊗ Φ)]

(
I A
A∗ I

)
=

(
(idℓ ⊗ Φ)(I) (idℓ ⊗ Φ)(A)
(idℓ ⊗ Φ)(A∗) (idℓ ⊗ Φ)(I)

)
≥ 0. (4.1.12)

Thus by Lemma 3, we have

[(idℓ ⊗ Φ)(A)]∗[ε+ (idℓ ⊗ Φ)(I)]−1[(idℓ ⊗ Φ)(A)] ≤ (idℓ ⊗ Φ)(I) + ε. (4.1.13)

That is, ∥∥[ε+ (idℓ ⊗ Φ)(I)]−1/2[(idℓ ⊗ Φ)(A)][ε+ (idℓ ⊗ Φ)(I)]−1/2
∥∥ ≤ 1. (4.1.14)

Thus we have

∥(idℓ ⊗ Φ)(A)∥ ≤
∥∥[ε+ (idℓ ⊗ Φ)(I)]1/2

∥∥2 = ∥Iℓ ⊗ Φ(I) + ε∥ = ∥Φ(I)∥+ ε. (4.1.15)

By taking ε→ 0 we have ∥(idℓ ⊗ Φ)(A)∥ ≤ ∥Φ(I)∥ for any ℓ and ∥A∥ ≤ 1. Thus we have ∥idℓ ⊗ Φ∥ ≤
∥Φ(I)∥ for any ℓ ∈ N. Therefore, we have ∥Φ∥cb = supℓ∈N ∥idℓ ⊗ Φ∥ ≤ ∥Φ(I)∥.

Lemma 20. Let A ∈ Mn(C) ⊗Mn(C), then A ≥ 0 if and only if A is a summation of “rank-1 block
matrices” (B∗

jBk)
n
j,k=1.

Proof. ⇐: obvious. ⇒: Since A ≥ 0, we have A = X∗X for some X ∈ Mn2(C). Then we expand this
blockwisely.

Proposition 59. A ∈Mn(C), then TFAE:

(1) A ≥ 0.

(2) X 7→ X ◦ A is positive.

(3) X 7→ X ◦ A is completely positive.

Proof. (1) =⇒ (2) follows readily from the Schur product theorem Theorem 2.4.1; (2) =⇒ (1)
follows by taking X = (1)1≤j,k≤n and A = ΦA(X) ≥ 0.

For (1) or (2) =⇒ (3), we recall that

ΦA(X) = V ∗(X ⊗ A)V, V : ei ⊗ ei 7→ ei. (4.1.16)

Since we have V ∗(·)V is a completely positive map, thus we have ΦA is completely positive.
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4.2 Characteriation of completely positive and k-positive maps
Definition 4.2.1 (Choi matrix theorem). Φ : Mn(C) → Mn(C) is a linear map, we define the Choi
matrix of Φ as

CΦ =
n∑

i,j=1

Ei,j ⊗ Φ(Ei,j) = (idn ⊗ Φ)( E︸︷︷︸
:=

∑m
j,k=1 Ejk⊗Ejk

) ∈Mn(C)⊗Mn(C). (4.2.1)

Remark 59. CΦ = (idn ⊗ Φ)(E). We note that E2 = 1
m
E thus E ≥ 0 (E is some multiple of a

projection). In some literatures, E is called the Jones projection.
Therefore, if Φ is completely positive, then CΦ ≥ 0.

Remark 60. We have the following very useful identity:

Φ(A) = (Tr⊗idn)(CΦ(A
T ⊗ I)). (4.2.2)

Caution: the trace is taken on the first factor. More generally, we have

BΦ(A)C = (Tr⊗MB)(CΦ(A
T ⊗ C)). (4.2.3)

This can be understood as

Φ(A) =
n∑

i,j=1

Tr
(
Ei,jA

T
)
Φ(Ei,j) =

n∑
i,j=1

aijΦ(Eij), (4.2.4)

(Tr⊗MB)(CΦ(A
T ⊗ C)) =

n∑
i,j=1

Tr
(
Ei,jA

T
)
MB(Φ(Ei,j)C) =

n∑
i,j=1

aijBΦ(Eij)C = BΦ(A)C.

(4.2.5)
This means that all the information of Φ is contained in CΦ.

Remark 61. Two important examples of choi matrices are

id : A 7→ A, Cid =
n∑

i,j=1

Ei,j ⊗ Ei,j = E. (4.2.6)

Tr : A 7→ (TrA)I, CTr = I ⊗ I = I. (4.2.7)

Next we will use the Choi matrix representation to deduce a quite important characterization of com-
pletely positive maps on finite-dimensional matrix algebras.

Theorem 4.2.2. Φ :Mm(C) →Mn(C) is a linear map, then TFAE:

(1) Φ is completely positive.

(2) (Kraus decomposition or Choi decomposition) Φ(A) =
∑r

j=1X
∗
jAXj for some Xj ∈ Mm,n(C)

and r ≤ mn.

(3) CΦ ≥ 0.
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(4) (CP in f.d. case is equiv. to m ∧ n-positive) idm∧n ⊗ Φ is positive where m ∧ n = min(m,n).

Remark 62. The main difficulties lie in two aspects. Our strategies are: (1) show (3) =⇒ (2) using the
“rank-1 decomposition” of CΦ to “open up” its structure and then using standard algebraic arguments;
(2) to show that (m∧n) ⇒ is sufficient to show ⟨CΦv, v⟩ ≥ 0 for any v ∈ Cm⊗Cn by direct computation.

Proof. The proof is totally algebraic construction.
(1) =⇒ (3): CΦ = (id ⊗ Φ)(E) ≥ 0 follows readily from E ≥ 0 and Φ is completely positive.
(3) =⇒ (2): By CΦ ≥ 0 and the approach of the previous lemma Lemma 20, we have the

“straightening” of CΦ as:

CΦ =
r∑
t=1

Y ∗
t Yt, Yt ∈M1,mn(C). (4.2.8)

We write
Yt = (v1,t, · · · , vm,t), where each vj,t is an n-dimensional row vector. (4.2.9)

We define Xt =

v1,t
...

vm,t

 ∈Mm,n(C), then we have:

• One the one hand, CΦ =
∑m

j,k=1Ej,k ⊗ Φ(Ej,k) =
∑r

t=1 Y
∗
t Yt.

• On the other hand, we compute
∑m

j,k=1Ej,k⊗X∗
t EjkXt = (X∗

t EjkXt)
m
j,k=1 = (X∗

t eje
∗
kXk)

m
j,k=1 =

(v∗jtvkt)
m
j,k=1 = Y ∗

t Yt.

Taking summation over t, we have

m∑
j,k=1

Ej,k ⊗ Φ(Ej,k) = CΦ =
r∑
t=1

Y ∗
t Yt =

m∑
j,k=1

Ej,k ⊗

(
r∑
t=1

X∗
t EjkXt

)
. (4.2.10)

Therefore we have that the action of Φ on Ejk is given by

Φ(Ejk) =
r∑
t=1

X∗
t EjkXt. (4.2.11)

That is,

Φ(A) =
r∑
t=1

X∗
tAXt, ∀A ∈Mm(C). (4.2.12)

(2) =⇒ (1) is obvious by the previous example.
(4) =⇒ (3): We take arbitrary v ∈ Cm ⊗ Cn, we need to show that ⟨CΦv, v⟩ ≥ 0.
In fact, we have

v =
m∑
j=1

n∑
k=1

vjkej ⊗ ek =
n∑
k=1

(
m∑
j=1

vjkej

)
⊗ ek =

m∑
j=1

ej ⊗

(
n∑
k=1

vjkek

)
. (4.2.13)

Therefore, we can always write

v =
r∑
j=1

xj ⊗ yj, xj ∈ Cm, yj ∈ Cn, r ≤ min(n,m) = m ∧ n. (4.2.14)
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We take v1, · · · , vr to be the O.N. basis of Cr and let Tr be the trace on Mm(C) or Mn(C), then we have

⟨CΦv, v⟩ = (Tr⊗Tr)(CΦvv
∗)

=
r∑

j,k=1

(Tr⊗Tr)(CΦxjx
∗
k ⊗ yjy

∗
k)

by the previous remark
=

r∑
j,k=1

Tr[Φ(x∗kxj)(yjy
∗
k)]

dilate again
=

r∑
j,k=1

(Tr⊗Tr)[(vkv
∗
j )⊗ Φ(xkx

∗
j)(vjv

∗
k ⊗ yjy

∗
k)]

= (Tr⊗Tr)
( r∑
j,k=1

(id ⊗ Φ)(vkv
∗
j ⊗ xkx

∗
j)
)

︸ ︷︷ ︸
≥0 by (4)

( r∑
j,k=1

vjv
∗
k ⊗ yjy

∗
k

)
︸ ︷︷ ︸

≥0

≥ 0.

(4.2.15)

(1) =⇒ (4) follows readily by definition.

Another very important characterization is the so-called Stinespring dilation theorem. It can be seen
as a GNS construction in terms of operator algebras.

Theorem 4.2.3 (Stinespring dilation theorem). Φ : Mm(C) → Mn(C) is a completely positive map,
then there exists a finite dimensionl Hilbert space H. Then there exists a unital ∗-homomorphism π :
Mm(C) → B(H) and a bounded operator V : Cn → H such that ∥Φ∥cb = ∥V ∥2 and for any A ∈
Mm(C), we have

Φ(A) = V ∗π(A)V. (4.2.16)

Proof. This is in fact the standard procedure of GNS construction. We denote H0 = Mm(C) ⊗ Cn and
we define

⟨A⊗ x,B ⊗ y⟩0 := ⟨Φ(B∗A)x, y⟩. (4.2.17)

This is a Hermitian bilinear form on Mm(C) ⊗ Cn. Since Φ is completely positive, we know that the
bilinear form is positive semidefinite, thus the Cauchy-Schwarz inequality holds.

We next deal with the null space. We define

N = {x ∈ H0 : ⟨x, x⟩0 = 0} ⊂ H0. (4.2.18)

Then H := H0/N is a Hilbert space with respect to the inner product ⟨·, ·⟩0 since it becomes now strictly
positive. We define

π :Mm(C) → B(H), π(A)(B ⊗ x+N ) := AB ⊗ x+N . (4.2.19)

It is easy to verify that π is in fact a ∗-homomorphism and ∥π(A)∥ ≤ ∥A∥.
In fact, Φ “acts like” an identity map on Cn, thus we define

V : Cn → H, V x := I ⊗ x+N . (4.2.20)

Then we have

(V ∗π(A)V )(x) = (V ∗π(A))(I ⊗ x+N ) = V ∗(A⊗ x+N ) = Φ(A)x. (4.2.21)
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Here, the last equality is because

⟨Φ(A)x, y⟩ = ⟨A⊗ x, I ⊗ y⟩0 = ⟨A⊗ x+N , V y⟩0 = ⟨V ∗(A⊗ x+N ), y⟩. (4.2.22)

We can also compute

∥V x∥2 = ⟨Φ(I)x, x⟩ ≤ ∥Φ(I)∥∥x∥2 Proposition 58
= ∥Φ∥cb∥x∥

2. (4.2.23)

Thus we have ∥V ∥2 = ∥Φ∥cb since the equality of the Cauchy-Schwarz inequality can be achieved.

Remark 63. This is an abstract construction and does not rely on the structure of the matrix algebra.
Thus this theorem itself is also true for general von-Neumann algebras and even C∗-algebras.

Corollary 11. Let Φ :Mm(C) →Mn(C) be a completely positive map, then there exists Xj ∈Mm,n(C)
such that

Φ(A) =
r∑
j=1

X∗
jAXj, ∀A ∈Mm(C). (4.2.24)

Remark 64. This corollary implies that the Choi matrix decomposition can also be derived from the
Stinespring dilation theorem.

Proof. By the above theorem, we have π : Mn(C) → B(H) ∼= Mℓ(C), Φ(A) = V ∗π(A)V . But we note
that the N above is trivial in this case, thus π is in fact a ∗-isomorphism. Therefore, we have ℓ must be
some multiple of n. Thus π must be:

π : A 7→

A . . .
A

, V : Cn → Cℓ ∈Mℓ,n(C). (4.2.25)

We write V = (X1, · · · , Xr), then we have

Φ(A) =

X
∗
1

...
X∗
r


A . . .

A

(X1 · · · Xr

)
=

r∑
j=1

X∗
jAXj. (4.2.26)

Example 19. Two sets of Kraus operators {Xj}rj=1 and {X̃ℓ}sℓ=1 represent the same complemently posi-
tive map, if and only if they are related by a unitary transform, i.e.

(X̃1, · · · , X̃ℓ, · · · , X̃s) = (X1, · · · , Xj, · · · , Xr)U. (4.2.27)

Here U is unitary and the smaller set is padded with zeros.

Proof. We note that

Φ̃(A) =
s∑
ℓ=1

X̃∗
ℓAX̃ℓ =

r∑
j,k=1

Ujℓ

s∑
ℓ=1

(
X∗
jAXk

)
Ukℓ =

r∑
j,k=1

(
s∑
ℓ=1

UkℓU
∗
ℓj

)
X∗
jAXk =

r∑
j,k=1

δjkX
∗
jAXk

=
r∑
j=1

X∗
jAXj = Φ(A).

(4.2.28)
The above derivation holds if and only if UU∗ = I i.e. U is unitary.
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Remark 65. In physics literatures, the invariance of the Kraus representation under unitary transforma-
tions is called the “gauge invariance” of the quantum channel.

Next we will give a quite different characterization of k-positive maps ⇐⇒ (P ⊗ I)CΦ(P ⊗ I) ≥ 0
for any projection P with rank k.

Proposition 60. Φ :Mn(C) →Mn(C) is a linear map, then Φ is k-positive ⇐⇒ (P⊗I)CΦ(P⊗I) ≥ 0
for any projection P with rank k.

Proof. We take v1, · · · , vk be the orthonormal basis of PCn. For any v ∈ Cm ⊗ Cn,

⟨(P ⊗ I)CΦ(P ⊗ I)v, v⟩ ≥ 0 ⇐⇒

〈
CΦ

k∑
j=1

vj ⊗ xj,

k∑
j=1

vj ⊗ xj

〉
≥ 0,∀xj ∈ Cn. (4.2.29)

This is equivalent to

k∑
j,ℓ=1

(Tr⊗Tr)(CΦvjv
∗
ℓ ⊗ xjxℓ) =

k∑
j,ℓ=1

(id ⊗ Tr)(Φ) =
k∑

j,ℓ=1

Tr(Φ(v∗ℓ vj)xjx
∗
ℓ) ≥ 0. (4.2.30)

This is equivalent to
x∗
[
(idk ⊗ Φ)(vℓv

∗
j )
]
x ≥ 0. (4.2.31)

Thus it is further equivalent to Φ is k-positive.

Remark 66. We can also see from above that the Choi matrix representation is indepedent of the choice
of the basis. Another way to understand this is by direct inspection: For U = (u1, · · · , un) unitary, if we
have

CΦ = (idn ⊗ Φ)[(U ⊗ U)E(U ⊗ U)∗] = (idn ⊗ Φ)

(
n∑

i,j=1

uiu
∗
j ⊗ uiu

∗
j

)
, (4.2.32)

then we have

(Tr⊗id)(CΦ(A
T ⊗ I)) =

n∑
i,j=1

Tr
(
uiu

∗
jA

T
)︸ ︷︷ ︸

=u∗iAuj

Φ(uiu
∗
j) = Φ(A) (4.2.33)

which also recovers the action of the original map Φ on A.

We can readily see how the above proposition can be useful to characterize the k-positivity.

Theorem 4.2.4. 1 ≤ k ≤ n, A 7→ (1− t) 1
n
Tr(A)I + tA, t ∈ R is k-positive ⇐⇒ t ∈ [− 1

nk−1
, 1].

Proof. Let Φt(A) : (1− t) 1
n
Tr(A)I + tA. Then we can compute the Choi matrix as

CΦt = (1− t)
1

n
I + tE. (4.2.34)

By the characterization Proposition 60 above, we have Φt is k-positive ⇐⇒ (P ⊗ I)CΦt(P ⊗ I) ≥ 0
for any projection P with rank k. That is,

(1− t)
1

n
(P ⊗ I) + t(P ⊗ I)E(P ⊗ I) ≥ 0. (4.2.35)
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Note that E is independent of the choice of basis. Then without loss of generality, we can take the basis
corresponding to the projection P , then under this basis we actually have the following very simple form:

(P ⊗ I)E(P ⊗ I) =


1 ··· 1
... . . . ...
1 ··· 1︸ ︷︷ ︸
k×k

0

0 0

. (4.2.36)

Thus we have that 1
k
(P ⊗I)E(P ⊗I) is a rank-1 projection matrix. Therefore, we have eq. (4.2.35) holds

if and only if

(1− t)
1

n
+ kt ≥ 0, 1− t ≥ 0, (4.2.37)

and hence

t ∈
[
− 1

nk − 1
, 1

]
. (4.2.38)

Remark 67. Inspired by the idea above, we actually have:

• Φt is positive if and only if t ∈ [− 1
n−1

, 1] by taking k = 1.

• Φt is completely positive if and only if t ∈ [− 1
n2−1

, 1] by taking k = n (recall that from (4) in
Theorem 4.2.2, we know that Φt : Mm(C) → Mn(C) is completely positive ⇐⇒ it is (m ∧ n)-
positive).

For the last part of this section, we will give a simple convexity inequality regarding the completely
positive maps and their adjoint maps.

Definition 4.2.5. We denote Φ∗ as the adjoint map of Φ :Mn(C) →Mm(C) with respect to the Hilbert-
Schmidt inner product.

Proposition 61. It is clear that

• Φ is k-positve ⇐⇒ Φ∗ is k-positive.

• Φ is completely positive ⇐⇒ Φ∗ is completely positive.

• Φ is unital ⇐⇒ Φ∗ is trace-preserving.

Remark 68. Caution! In general, we de not have ∥Φ∥cb = ∥Φ∗∥cb. To see this, if Φ is unital, then
∥Φ∥cb = ∥Φ(I)∥ = ∥I∥ = 1, but ∥Φ∗∥cb can be numbers other than 1.

The example above in Theorem 4.2.4 is both unital and trace-preserving.

Theorem 4.2.6 (Majorization inequality). Let A ∈ Hn, Φ : Mn(C) → Mn(C) be a positive (we only
need 1-positive here), trace-preserving and unital map. Then we have Φ(A) ≺ A.

Proof. Let λ1 ≥ · · · ≥ λn be eigenvalues of Φ(A), Pk is the orthogonal projection onto the eigenspace
spanned by the first k eigenvectors. Then we have

k∑
j=1

λj = Tr(PkΦ(A)) = Tr(Φ∗(Pk)A)
Φ∗ is TP and unital

≤ sup
0≤T≤1,TrT=k

Tr(TA)
like min-max theorem

=
k∑
j=1

λj(A).

(4.2.39)
By trace-preserving we have Tr(Φ(A)) = Tr(A), thus we have Φ(A) ≺ A.
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Corollary 12. A ∈ Hn, Φ : Mn(C) → Mn(C) is a unital and trace-preserving map. f is a convex
function, then we have

Tr f(Φ(A)) ≤ Tr f(A). (4.2.40)

Proof. Recall that A ≺ B if and only if Tr f(A) ≤ Tr f(B) for any convex function f .

Corollary 13. Φ is a unital and trace-preserving positive map, then ∥Φ(A)∥p ≤ ∥A∥p.

Corollary 14. B ≥ 0, Φ(A) :=
∫∞
0

B
1
2

λ+B
A B

1
2

λ+B
dλ which is trace-preserving and unital. If A ∈ Hn, then

Φ(A) ≺ A.

4.3 Conditional expectations
Definition 4.3.1. Let A be a unital (which means I ∈ A) ∗-subalgebra of Mn(C). We say EA is the
conditional expectation onto A (or given A), if

• EA :Mn(C) → A is a positive map;

• EA is unital i.e. EA(I) = I;

• EA(B1AB2) = B1EA(A)B2 for any B1, B2 ∈ A and A ∈ Mn(C). In particular, EA(A) = A for
A ∈ A.

We say a conditional expectation EA is a trace-preserving conditional expectation (TPCE) if it also
satisfies

Tr(EA(A)) = Tr(A), ∀A ∈Mn(C). (4.3.1)

Remark 69. • It is easy to see that E2
A(A) = EA(EA(A)︸ ︷︷ ︸

∈A

) for any A ∈Mn(C), i.e. E2
A = EA.

• By noting that
EA [(A− EA)

∗(A− EA)] ≥ 0 (4.3.2)

we see that EA(A
∗A) ≥ EA(A

∗)EA(A).

• If EA is the trace-preserving conditional expectation, then we have Tr(A∗A) TrEA(A
∗A) ≥

Tr[EA(A
∗)EA(A)], i.e. ∥EA(A)∥2 ≤ ∥A∥2. In other words, EA can be viewed as an orthogo-

nal projection: (Mn(C), ∥·∥2) → (A, ∥·∥2). By the uniqueness of orthogonal projection, we know
that the trace-preserving conditional expectation is unique.

• In general, if we have a faithful state σ, we can also use the trace to define the weighted inner
product and the corresponding Hilbert space L2(σ), then the mapping FA : L2(Mn(C), σ) →
L2(A, σ) is an orthogonal projection as well as a conditional expectation.

Theorem 4.3.2 (von Neumann’s double commutant theorem). Let A be a unital ∗-subalgebra of Mn(C).
We define the commutant of A as

A′ = {X ∈Mn(C) : AX = XA,∀A ∈ A}. (4.3.3)

Then A′ is also a unital ∗-subalgebra of Mn(C). Likewise, we define the double commutant of A as

A′′ = (A′)′ = {X ∈Mn(C) : AX = XA,∀A ∈ A′}. (4.3.4)

We have A′′ = A.
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Proof. exercise 28.

Definition 4.3.3. • Let U be a group consist of unitary matrices in A. We say U is the generating
unitary group of A if A = Span{U ∈ U}.

• X =
∑n

j=1Ej,j+1, Z = diag(1, ω, · · · , ωn−1) where ω = e
2πi
n . Note thatX and Z are both unitary

matrices.

• We consider the finite set

U = {ωℓXjZk : j, k, l = 1, 2, · · · , n}. (4.3.5)

Obviously this is in fact a finite unitary group. Moreover, since {Xj}1≤j≤n already linearly gener-
ates Mn(C), this is in fact a finite and generating unitary group of Mn(C).

• Note that any finite dimensional ∗-algebra is a direct sum of matrix algebrasMn(C), thus the finite,
generating unitary group of A always exists.

The next theorem gives a very important description of the TPCE. Briefly speaking, in finite dimen-
sion, the TPCE is a convex combination of conjugations using unitary matrices in A′.

Theorem 4.3.4. Let A be a ∗-subalgebra of Mn(C) with EA being the TPCE. Then there exists
U1, · · · , Um ∈ A′ being unitary matrices in A′, such that

EA(A) =
1

m

m∑
j=1

UjAU
∗
j , ∀A ∈Mn(C). (4.3.6)

Proof. Let U being the generating unitary group of A′ with |U| <∞. We define

E :Mn(C) →Mn(C), E(A) =
1

|U|
∑
U∈U

UAU∗. (4.3.7)

For any Q ∈ U ⊂ A′, we have

QE(A) =
1

|U|
∑
U∈U

QUAU∗ U 7→ QU is a bijection (left-translation) on U
=

1

|U|
∑
U∈U

UA(Q−1U)∗

=
1

|U|
∑
U∈U

UAU∗Q = E(A)Q.
(4.3.8)

Thus E(A) commutes with U and thus commutes with the whole A′, i.e. E(A) ∈ (A′′)
Theorem 4.3.2

= A.
Therefore E :Mn(C) → U. It is clear that E is positive. Moreover, E(I) = I and for B1, B2 ∈ A,

E(B1AB2) =
1

|U|
∑
U∈U

UB1AB2U
∗ B1, B2 ∈ A

=
1

|U|
∑
U∈U

B1UAU
∗B2 = B1E(A)B2. (4.3.9)

Thus E = EA is a conditional expectation given A. We can take m = |U|. In fact, it is easy to verify that
E is trace-preserving and thus EA is the unique TPCE.
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Corollary 15 (Finite dimensional TPCEs are CPTP). By the above characterization Theorem 4.3.4 of
the TPCE, we actually have EA is a CPTP and unital map. In particular, we have ∥EA∥cb = ∥EA∥ =
∥EA(I)∥ = 1.

Example 20. Sometimes we care about the adjoint of the conditional expectation. Since the conditional
expectation itself is unital, the adjoint of the conditional expectation is a positive and trace-preserving.
Physically speaking, this corresponds to the Schrödinger picture acting on the density matrix.

With respect to the Hilbert-Schmidt inner product, we have

Tr(E∗
A(A)

∗B) = Tr(A∗EA(B)). (4.3.10)

• The adjoint of EA is also an idempotent map. This is because

Tr
(
E∗2

A (A)∗B
)
= Tr(E∗

A(A)
∗EA(B)) = Tr

(
A∗E2

A(B)
)
= Tr(A∗EA(B)) = Tr(E∗

A(A)
∗B)
(4.3.11)

for any A,B ∈Mn(C). Thus we have E∗2
A = E∗

A.

• The adjoint of EA is a bimodular map. For any C1, C2 ∈ A, we have

Tr(E∗
A(C1AC2)

∗B) = Tr((C1AC2)
∗EA(B))

= Tr(A∗C∗
1EA(B)C∗

2)
E is a bimodular map, A is a ∗-subalgebra

= Tr(A∗EA(C
∗
1BC

∗
2))

= Tr(E∗
A(A

∗)C∗
1BC

∗
2) = Tr(C∗

2E
∗
A(A)

∗C∗
1B) = Tr([C1E

∗
A(A)C2]

∗B)
(4.3.12)

for any A,B ∈ Mn(C). Thus we have the bimodular property of the adjoint of the conditional
expectation

E∗
A(C1AC2) = C1E

∗
A(A)C2, ∀A ∈Mn(C), C1, C2 ∈ A. (4.3.13)

• In general, the adjoint of the conditional expectation is not a conditional expectation. This is
because the adjoint of the conditional expectation is unital if and only if the conditional expectation
is a trace-preserving i.e. itself is a TPCE. We have Proposition 62.

Proposition 62. Let A be a ∗-subalgebra of Mn(C). The TPCE EA is a self-adjoint map w.r.t. the
Hilbert-Schmidt inner product.

Proof. By example 20, we know that E∗
A is a unital, positive, idempotent and bimodular map. We also

know that E∗
A :Mn(C) → A is a trace-preserving map since EA itself is unital. Thus we have E∗

|mfA is a
TPCE onto A. By the uniqueness of the TPCE, we know that E∗

A = EA, i.e. EA is self-adjoint w.r.t. the
Hilbert-Schmidt inner product.

Example 21. In fact, with the help of the adjoint of conditional expectations, we are able to say more
about the “weight” of the L2 space corresponding to the orthogonal projection as discussed in Re-
mark 69.

We define the following positive linear functional

ρ(X) := Tr(XE∗
A(I)), ∀X ∈Mn(C). (4.3.14)

Then EA is a Dρ-preserving conditional expectation. That is because

ρ(EA(A)) = Tr(EA(A)E
∗
A(I)) = Tr

(
AE∗2

A (I)
)

E∗
A is an idempotent

= Tr(AE∗
A(I)) = ρ(A), ∀A ∈Mn(C).

(4.3.15)

Thus EA is a Dρ-preserving conditional expectation.
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Next we discuss two most fundamental examples of conditional expectations. The first is the so-called
pinching map and the second is the so-called partial trace.

Definition 4.3.5 (Pinching maps). Let {Pj}mj=1 be a family of orthogonal projections on Cn such that∑m
j=1 Pj = I i.e. a set of unital decomposition. We define the pinching map as

E :Mn(C) →Mn(C), E(A) =
m∑
j=1

PjAPj. (4.3.16)

Then, it is easy to verify that E is in fact the conditional expectation from Mn(C) onto the unital ∗-
subalgebra

A =
m⊕
j=1

PjMn(C)Pj. (4.3.17)

Intuitively, the pinching map is equivalent to taking the “block diagonal” of the matrix A with respect to
the orthogonal projections {Pj}mj=1.

Definition 4.3.6 (Partial trace). Consider Mm(C)⊗Mn(C), then Tr⊗id is a linear map from Mm(C)⊗
Mn(C) to Mn(C) ∼= CI ⊗Mn(C)

∗-subalgebra
⊂ Mm(C)⊗Mn(C). We define the partial trace as

Tr1(A) := (Tr⊗id)(A), A ∈Mm(C)⊗Mn(C). (4.3.18)

Note that
(Tr⊗id)(A⊗B) = Tr(A)B = Tr(A)I ⊗B. (4.3.19)

Therefore, we have 1
m
Tr1 =

1
m
Tr⊗id is a conditional expectation.

Similarly, we can define the partial trace Tr2(A) = (id⊗Tr)(A) fromMm(C)⊗Mn(C) toMm(C) ∼=
Mm(C)⊗ CI

∗-subalgebra
⊂ Mm(C)⊗Mn(C). Then 1

n
id ⊗ Tr is a conditional expectation.

Remark 70. From the structural perspetive, since we have for any finite-dimensional unital ∗-subalgebra,
we can write

A ∼=
m⊕
j=1

Mnj
(C)⊗ CIn′

j
,

m∑
j=1

njn
′
j = n. (4.3.20)

Thus any conditional expectation can be viewed as a combination of the pinching map and the partial
trace. More explicitly, we can write

EA(A) =
m⊕
j=1

(idnj
⊗ Tr)(PjAPj)⊗ In′

j
∈Mn(C), A ∈Mn(C). (4.3.21)

4.4 Schwarz inequalities
In this section, we will discuss the convexity inequalities related to positive maps. Basically, we will
apply the operator and trace Jensen inequalities to the positive maps.

We will first give an important technical lemma with respect to the structural properties of positive
maps onto commutative ∗-subalgebras.
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Lemma 21. Suppose A is a commutative ∗-subalgebra of Mm(C) and Φ : A → Mn(C) is a positive
map. Then Φ is a completely positive map.

Remark 71. Basically, we have that positive =⇒ CP for commutative ∗-algebras.

Proof. Note that A ∼=
⊕ℓ

j=1CInj
, we may denote the family minimal projections as {Pj}ℓj=1. Suppose

A ∈Mk(C)⊗A, by the structure of A, we may write A =
⊕ℓ

j=1Aj ⊗ Pj . Since this operator is “block-
diagonalized” with respect to certian basis, we have A ≥ 0 =⇒ each Aj ≥ 0. Thus Φ(Aj) ≥ 0 for each
j and thus (idk ⊗ Φ)(A) =

∑ℓ
j=1Aj ⊗ Φ(Pj) ≥ 0 and hence Φ is completely positive.

We first deal with the case of general matrices before moving on to the case of Hermitian matrices.

Proposition 63. Suppose that Φ :Mm(C) →Mn(C) is a 2-positive map. Then for any A ∈Mm(C),

Φ(A)∗Φ(A) ≤ ∥Φ∥Φ(A∗A). (4.4.1)

Moreover, ∥Φ∥ = ∥Φ(I)∥.

Proof. By the fact that Φ is 2-positive, we have:(
I A
A∗ A∗A

)
=

(
I
A∗

)(
I A

)
≥ 0 ⇒

(
Φ(I) + ε Φ(A)
Φ(A)∗ Φ(A∗A) + ε

)
≥ 0. (4.4.2)

By the Schur complement lemma Lemma 3 we have

Φ(A∗A) + ε ≥ Φ(A)∗[Φ(I) + ε]−1Φ(A) ≥ 0 =⇒ Φ(A∗A) + ε ≥ Φ(A)∗∥Φ(I) + ε∥−1Φ(A) ≥ 0.
(4.4.3)

This indicates that
∥Φ(I)∥Φ(A∗A) ≥ Φ(A)∗Φ(A) (4.4.4)

by taking limit ε→ 0. Note again that Φ(A∗A) ≤ ∥A∥2Φ(I), we have that ∥Φ(A)∥ ≤ ∥A∥∥Φ(I)∥. Thus
we have ∥Φ(I)∥ ≥ ∥Φ∥ i.e. ∥Φ∥ = ∥Φ(I)∥.

Remark 72. For non-Hermitian case, we see that the “square” is essential. Thus we need to assume that
Φ is 2-positive to “open up” the structure.

Theorem 4.4.1 (Choi-Schwarz inequality for positive maps). Suppose that A ⊂Mm(C) is a ∗-subalgebra,
Φ : A → Mn(C) is a positive map with ∥Φ∥ ≤ 1 and f : Dom(f) ⊂ R → R is an operator convex
function with f(0) ≤ 0 and Sp(A) ⊂ Dom(f). Then we have

f(Φ(A)) ≤ Φ(f(A)), ∀A ∈ A ∩Hm. (4.4.5)

Lemma 22 (Choi-Schwarz inequality for CP maps). Suppose that Φ :Mm(C) →Mn(C) is a completely
positive map. Let f be an operator convex function with f(0) ≤ 0 and Sp(A) ⊂ Dom(f). For conve-
nience we assume further that ∥Φ∥ ≤ 1. Then we have the Schwarz inequality eq. (4.4.5) holds for any
A ∈ Hm.

Proof of Lemma 22. By Stinespring dilation theorem Theorem 4.2.3, we have

Φ(A) = V ∗π(A)V, π :Mm(C) → B(H) ∗-homomorphism, V : Cn → H bounded linear operator.
(4.4.6)

Moreover, ∥Φ∥cb = ∥V ∥2 and ∥Φ∥ ≤ 1 implies that V ∗V ≤ 1. By operator Jesnsen inequality Theo-
rem 2.2.2, we have

f(V ∗π(A)V ) ≤ V ∗f(π(A))V = V ∗π(f(A))V = Φ(f(A)). (4.4.7)
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Corollary 16. Lemma 22 holds for any unital ∗-subalgebra A of Mm(C).

Proof of Corollary 16. We take the TPCE EA from Mm(C) to A, then Φ ◦ EA is a completely positive
map from Mm(C) to Mn(C) by “the fact that f.d. TPCEs are CPTP” (see Corollary 15).

Proof of Theorem 4.4.1. Let C∗(A) be the unital ∗-subalgebra of A generated by A and I , then it is clear
that C∗(A) is commutative. By Lemma 21, we have Φ|C∗(A) : C∗(A) → Mn(C) and EC∗(A) : A →
C∗(A) are completely positive maps. Thus we have Φ|C∗(A) ◦EC∗(A) is a completely positive map. Then
the result follows from Corollary 16.

Remark 73. The proof strongly depends on the structural properties of positive maps on commutative
∗-subalgebras, which significantly strengthens the result in the sense that we do not need to assume Φ is
completely positive but only 1-positive (in the case of Hermitian matrices).

Corollary 17 (Kadison-Schwarz inequality). Φ : Mm(C) → Mn(C) is a positive map with ∥Φ∥ ≤ 1,
A ∈ Hm, then we have Φ(A)2 ≤ Φ(A2).

Corollary 18. Φ : Mm(C) → Mn(C) is a unital positive map with ∥Φ∥ ≤ 1, then we have Φ(A)−1 ≤
Φ(A−1) for any A ≥ 0.

Proof. t 7→ t−1 is operator convex on (0,∞), thus t 7→ f(t) := 1
t+ε

− 1
ε

is operator convex on (0,∞) for
any ε > 0 and we have f(0) = 0. By Choi-Schwarz inequality Theorem 4.4.1, we have

(Φ(A) + ε)−1 − ε−1 ≤ Φ((A+ ε)−1 + ε−1)− ε−1. (4.4.8)

Thus we have

(Φ(A) + ε)−1 ≤ Φ((A+ ε)−1) + ε−1Φ(I)− ε−1 Φ is unital
= Φ((A+ ε)−1). (4.4.9)

Taking limit ε→ 0, we have Φ(A)−1 ≤ Φ(A−1).

Comparing this result with Proposition 63, we have a natural question: can we generalize the Choi-
Schwarz type inequality to the case of non-Hermitian matrices? The answer is yes, however, as we
may expect, we need to assume that the map is 2-positive. Moreover, since our strategy is to use the
“Hermitian-dilation” of the non-Hermitian matrices, we need to assume that the operator convex function
is even.

Theorem 4.4.2. Let Φ : Mm(C) → Mn(C) be a 2-positive map with ∥Φ∥ ≤ 1. f is an operator convex
function with f(0) ≤ 0 and Sp(|A|) ⊂ Dom(f) = (−a, a) (a > 0). Assume that f is an even function,
then we have

f(|Φ(A)|) ≤ Φ(f(|A|)) (4.4.10)

Proof. We have
(

0 A
A∗ 0

)
is Hermitian and id2 ⊗ Φ is positive, thus by Choi-Schwarz inequality Theo-

rem 4.4.1 we have

f

(
0 Φ(A)

Φ(A)∗ 0

)
≤ (id2 ⊗ Φ)

[
f

(
0 A
A∗ 0

)]
. (4.4.11)
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Since f is even, we have the following functional calculus

f

(
0 A
A∗ 0

)
= f

(∣∣∣∣( 0 A
A∗ 0

)∣∣∣∣) = f

(∣∣∣∣( 0 U |A|
|A|U∗ 0

)∣∣∣∣)
= f

(∣∣∣∣( 0 U |A|
|A|U∗ 0

)∣∣∣∣) = f

[∣∣∣∣(0 U
I 0

)(
|A| 0
0 |A|

)(
U 0
0 I

)∗∣∣∣∣] = f

(
|A| 0
0 |A|

)
=

(
f(|A|) 0

0 f(|A|)

)
.

(4.4.12)
Then eq. (4.4.11) becomes(

f(|Φ(A)|) 0
0 f(|Φ(A)|)

)
≤ (id2 ⊗ Φ)

(
f(|A|) 0

0 f(|A|)

)
=

(
Φ(f(|A|)) 0

0 Φ(f(|A|))

)
. (4.4.13)

Thus we have
f(|Φ(A)|) ≤ Φ(f(|A|)). (4.4.14)

Remark 74. Take f(t) = t2, we have |Φ(A)|2 ≤ Φ(|A|2). Thus we have Φ(A)∗Φ(A) ≤ Φ(A∗A) for
∥Φ∥ ≤ 1 and 2-positive. This is just what we have proved in the original version of Schwarz inequality
Proposition 63.

We can also apply the Jensen trace inqualities Theorem 3.3.1 and Proposition 34 to positive maps to
obtain the so-called “trace Schwarz inequality”.

Lemma 23. Φ :Mm(C) →Mn(C) a completely positive map with ∥Φ∥ ≤ 1. f : Dom(f) → R a convex
(no need to be operator convex) function with f(0) ≤ 0. Then we have

Tr f(Φ(A)) ≤ TrΦ(f(A)), ∀A ∈ Hm. (4.4.15)

Proof. It follows from the Stinespring dilation theorem Theorem 4.2.3 and Jensen trace inequality Propo-
sition 34 in the similar way as the proof of Lemma 22.

Then by imitating the proof of Theorem 4.4.1, we can easily obtain

Theorem 4.4.3. Φ : Mm(C) → Mn(C) is a positive (no need to be completely positive) map with
∥Φ∥ ≤ 1. f : Dom(f) → R is an operator convex function with f(0) ≤ 0 and Sp(A) ⊂ Dom(f). Then
we have that for any A ∈ Hm with sp(A) ⊂ Dom(f),

Tr f(Φ(A)) ≤ TrΦ(f(A)). (4.4.16)

4.5 Strong subadditivity of entropy functionals
Example 22. Let D be a density matrix in Mn(C)⊗Mm(C)⊗Ml(C) (a tripartite system), we consider

D12 = Tr3(D) ∈Mn(C)⊗Mm(C), TrD12 = 1,

D23 = Tr1(D) ∈Mm(C)⊗Ml(C), TrD23 = 1,
(4.5.1)
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as well as
D2 = Tr13(D) = (Tr⊗id ⊗ Tr)(D) ∈Mm(C), TrD2 = 1. (4.5.2)

That is, D12, D23 and D2 are still density matrices in the corresponding matrix algebras. We consider
the entropy functional

H(D) = −Tr(D logD). (4.5.3)

We ask: what is the relation between the entropies of these density matrices?
The answer is given by the strong subadditivity of the entropy functional, which states that

H(D) +H(D2) ≤ H(D12) +H(D23). (4.5.4)

Example 23. In this example, we will give some techniques for computing the partial trace. Let D ∈⊗k
i=1Mni

(C) and A ⊂ {1, · · · , k}. We denote

DA = TrAc(D) = Tr{1,··· ,k}\A(D) ∈
⊗
i∈A

Mni
(C). (4.5.5)

Then we have
Tr(Df(DA)) = Tr(DAf(DA)). (4.5.6)

That is because,

Tr((A⊗B) Tr1C) = Tr((A⊗B)(I ⊗ Tr1C)) = TrATr(B Tr1C) = Tr(Tr1(A⊗B) Tr1C).
(4.5.7)

Thus in general, we have

Tr(DTr1C) = Tr(Tr1DTr1C), where Tr1C on LHS should be understood as I ⊗ Tr1C. (4.5.8)

For general conditional expectations, we can do the same calculations. For simplicity, we consider again
the partical trace which we now write as E12, denoting the conditional expectation that keep the first two
factors. A concrete example is

Tr(D12f(D2)D23g(D2)) = Tr(E12(D12)f(D2)D23g(D2))

E12 is self-adjoint by Proposition 62
= Tr(D12E12[f(D2)D23g(D2)])

E12 is a bimodular map
= Tr(D12f(D2)E12[D23]g(D2))

= Tr(D12f(D2)D2g(D2)) = Tr(D12E2[f(D2)D2g(D2)])

E2 is self-adjoint
= Tr(E2(D12)f(D2)D2g(D2)) = Tr(D2f(D2)D2g(D2))

(4.5.9)

It is easy to see that similar calculations can also be generalized to abstract conditional expectations.

Theorem 4.5.1 (Strong subadditivity of entropy functionals). Let D ∈ Mn(C)⊗Mm(C)⊗Ml(C) be a
density matrix, then we have

H(D) +H(D2) ≤ H(D12) +H(D23). (4.5.10)
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Proof. Note that

H(D12) +H(D23)−H(D)−H(D2)

= −Tr(D12 logD12)− Tr(D23 logD23) + Tr(D logD) + Tr(D2 logD2)
by example 23

= −Tr(D logD12 −D logD23 +D logD +D logD2)

= Tr(D logD −D[logD12 + logD23 − logD2])

X := elogD12+logD23−logD2

= Tr(D logD −D logX) = H

(
D∥ X

TrX

)
− log TrX

by the non-negativity of relative entropy
≥ − log TrX.

(4.5.11)

Thus it remains to verify that TrX ≤ 1. This follows readily from the Golden-Thompson-Lieb inequality
Theorem 3.8.2

Tr(X)
Theorem 3.8.2

≤
∫ ∞

0

Tr
(
D12(t+D2)

−1D23(t+D2)
−1
)
dt

example 23
=

∫ ∞

0

Tr
(
D2(t+D2)

−1D2(t+D2)
−1
)
dt

= TrD2 = 1.

(4.5.12)

Corollary 19 (Subadditivity of entropy). D ∈Mn(C)⊗Mm(C) is a density matrix, then we have

H(D) ≤ H(D1) +H(D2). (4.5.13)

Proof. We view D as a matrix in Mn(C)⊗Mr(C)⊗Mm(C). Then D12 = D1, D23 = D2 and D2 = I .
Then it follows from Theorem 4.5.1 that

H(D) ≤ H(D12) +H(D23)−H(D2) = H(D1) +H(D2)−H(I) = H(D1) +H(D2). (4.5.14)

4.6 Generalized data processing inequality
In this section, we consider the invertible density matrix D ∈ H>0

n .
We define the left action and right action of D on Mn(C) as follows:

LD :Mn(C) →Mn(C), X 7→ DX, RD :Mn(C) →Mn(C), X 7→ XD. (4.6.1)

Definition 4.6.1 (Quasi-entropy). Let D1, D2 ∈ H>0
n be two invertible density matrices, f : [0,∞) →

[0,∞) be a operator monotone function with f(0) ≥ 0, we define the quasi-entropy as

HA
f (D1∥D2) := Tr

(
D

1
2
2A

∗f(LD1R
−1
D2
)(AD

1
2
2 )
)

= ⟨f(LD1R
−1
D2
)(AD

1
2
2 ), AD

1
2
2 ⟩

= Tr
(
A∗f(LD1R

−1
D2
)(RD2(A))

) (4.6.2)
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Remark 75. Without ambiguity, we can also write

Tr
(
D

1
2
2A

∗f(LD1R
−1
D2
)(AD

1
2
2 )
)
Tr
(
D

1
2
2A

∗f(LD1R
−1
D2
)(A)D

1
2
2

)
. (4.6.3)

That is because, for polynomial f , we obviously have

f(LD1R
−1
D2
)(A)D

1
2
2 = f(LD1RD−1

2
)(A)D

1
2
2 = f(LD1R

−1
D2
)(AD

1
2
2 ). (4.6.4)

Definition 4.6.2 (Schwarz mapping). We say Φ is a Schwarz mapping, if it satisfies

Φ(A∗)Φ(A) ≤ Φ(A∗A), ∀A ∈Mn(C). (4.6.5)

Example 24. By Proposition 63 or Theorem 4.4.2, we have that any 2-positive map with ∥Φ∥ ≤ 1 is a
Schwarz mapping.

If Φ is a CPTP map, then Φ∗ is a CP and unital map with ∥Φ∗∥cb = ∥Φ∗∥ = ∥Φ∗(I)∥ = 1, thus Φ∗ is
a unital Schwarz mapping.

Theorem 4.6.3 (Generalized data processing inequality). Let D1, D2 ∈ H>0
n be two invertible density

matrices, Φ : Mn(C) → Mm(C) be a unital Schwarz mapping and f : [0,∞) → [0,∞) be an operator
monotone function with f(0) ≥ 0. Then we have

HA
f (Φ

∗(D1)∥Φ∗(D2)) ≥ H
Φ(A)
f (D1∥D2). (4.6.6)

Proof. Without loss of generality, we assume that f(0) = 0 since

HA
f+λ(D1∥D2) = HA

f (D1∥D2) + λTr(A∗AD2). (4.6.7)

We assume further that Φ∗(D2) > 0. We define a linear map

V :Mn(C) →Mn(C), XΦ∗(D2)
1
2 7→ Φ(X)D

1
2
2 , X ∈Mn(C). (4.6.8)

This map is well-defined since Φ∗(D2)
1
2 is invertible. We have∥∥∥Φ(X)D

1
2
2

∥∥∥2 = Tr(D2Φ(X)∗Φ(X))
Φ is a Schwarz mapping

≤ Tr(D2Φ(X
∗X)) = Tr(Φ∗(D2)(X

∗X))

=
∥∥∥XΦ∗(D2)

1
2

∥∥∥2, ∀X ∈Mn(C) ⇒ ∥V∥ ≤ 1.

(4.6.9)

Thus we can estimate

⟨LD1R
−1
D2
VXΦ∗(D2)

1
2 ,VXΦ∗(D2)

1
2 ⟩ = ⟨LD1R

−1
D2
Φ(X)D

1
2
2 ,Φ(X)D

1
2
2 ⟩

= Tr(D1Φ(X)Φ(X∗))
Schwarz
≤ Tr(D1Φ(X

∗X))

= Tr(Φ∗(D1)X
∗X)

= ⟨LΦ∗(D1)R
−1
Φ∗(D2)

XΦ∗(D2)
1
2 , XΦ∗(D2)

1
2 ⟩.

(4.6.10)

Thus we have
V∗LD1R

−1
D2
V ≤ LΦ∗(D1)R

−1
Φ∗(D2)

. (4.6.11)
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By the operator monotonicity of f , we have

f(V∗LD1R
−1
D2
V) ≤ f(LΦ∗(D1)R

−1
Φ∗(D2)

). (4.6.12)

By the equivalence of operator convexity and operator monotonicity Theorem 2.2.3, we have that f is
operator convex, thus

V∗f(LD1R
−1
D2
)V ≤ f(LΦ∗(D1)R

−1
Φ∗(D2)

). (4.6.13)

By the operator monotonicity of the mapping Tr
(
Φ∗(D2)

1
2A∗(·)AΦ∗(D2)

1
2

)
, we have

Tr
(
Φ∗(D2)

1
2A∗V∗f(LD1R

−1
D2
)VAΦ∗(D2)

1
2

)
≤ Tr

(
Φ∗(D2)

1
2A∗f(LΦ∗(D1)R

−1
Φ∗(D2)

)AΦ∗(D2)
1
2

)
(4.6.14)

It follows readily that the generalized data processing inequality holds.
For Φ∗(D2) ≥ 0, we only need to consider Φ∗(D2) + ε (ε > 0) and we have

HA
f (Φ

∗(D1)∥Φ∗(D2) + ε) ≥ H
Φ(A)
f (D1∥D2 + ε). (4.6.15)

Then we take ε→ 0.

Corollary 20. If Φ∗ is a quantum channel (CPTP map), then we have

HA
f (Φ(D1)∥Φ(D2)) ≤ H

Φ∗(A)
f (D1∥D2). (4.6.16)

Proof. Recall example 24, we have Φ∗ is a unital Schwarz mapping, thus we can apply Theorem 4.6.3 to
obtain the result.

Corollary 21. Let D1, D2 ∈ H>0
n be two invertible density matrices, Φ : Mn(C) → Mm(C) be a CPTP

map, then
H(Φ(D1)∥Φ(D2)) ≤ H(D1∥D2). (4.6.17)

Proof. Take f(t) = tα for α ∈ (0, 1), then by Theorem 4.6.3, we have

Tr
(
A∗(LΦ(D1)R

−1
Φ(D2)

)αRΦ(D2)(A)
)
≥ Tr

(
Φ∗(A)(LD1R

−1
D2
)αΦ(A)

)
. (4.6.18)

Note that log t = limα→0
tα−1
α

, thus we have

Tr
(
A∗ log

(
LΦ(D1)R

−1
Φ(D2)

)
+ Tr(A∗AΦ(D2))RΦ(D2)(A)

)
≥ Tr

(
Φ∗(A) log

(
LD1R

−1
D2

)
Φ(A)

)
+ Tr(Φ(A)∗Φ(A)Φ(D2)).

(4.6.19)

We take A = I , then

Tr[(log Φ(D1)− log Φ(D2))Φ(D2)] ≥ Tr[(logD1 − logD2)D2]. (4.6.20)
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4.7 Quantum Perron-Frobenius theorem
In this section we consider the so-called strictly positive and positive irreducible matrices. Basically, we
will study their spectral properties. Next we will see that we can actually put these analysis into a more
abstract framework of strictly positive maps and positive irreducible maps.

Definition 4.7.1. We say a real matrix A ∈ Mn(R) is positive or non-negative (strictly positive) if
aij ≥ (>) 0 for all 1 ≤ i, j ≤ n, denoted as A ⊵ (▷) 0.

We denote |A|+ := (|aij|)1≤i,j≤n.

Lemma 24. A,B ∈Mn(C) and B ⊵ 0, |A|+ ⊴ B, then r(A) ≤ r(|A|+) ≤ r(B).
Here, r(A) is a spectral radius of A and can be explicitly computed as

r(A) = lim
m→∞

∥Am∥
1
m = lim

m→∞
∥Am∥

1
m
2 . (4.7.1)

Proof. We observe that
|Am|+ ⊴ |A|m+ ⊴ Bm. (4.7.2)

Since we want to use the information of the entries, we use the formula corresponding to the 2-norm

∥Am∥2 ≤
∥∥|Am|+∥∥2 ≤ ∥∥|A|m+∥∥2 ≤ ∥Bm∥2. (4.7.3)

Thus we have
r(A) ≤ r(|A|m+ ) ≤ r(B). (4.7.4)

Remark 76. This lemma can be viewed as an analogue of the spectral radius bound given by the order
of positive definite matrices. That is, for Hermitian matrices A,B, if |A| ≤ B, then we also have

r(A) ≤ r(B). (4.7.5)

Lemma 25 (Row-sum bounds of spectral radii). A is a positive matrix, then we have

min
1≤j≤n

n∑
k=1

ajk (the smallest row-sum.) ≤ r(A) ≤ max
1≤j≤n

n∑
k=1

ajk (the largest row-sum.). (4.7.6)

Note that r(A) = r(AT ), we have further

min
1≤k≤n

n∑
j=1

ajk (the smallest column-sum.) ≤ r(A) ≤ max
1≤k≤n

n∑
j=1

ajk (the largest column-sum.). (4.7.7)

Proof. Let α = min1≤j≤n
∑n

k=1 ajk ≥ 0.

If α = 0, we take B = 0. If α > 0, we take B = (bjk)1≤j,k≤n =
(

ajk∑n
ℓ=1 ajℓ

α
)

. Then A ⊵ B holds

obviously (since α ≥
∑n

ℓ=1 ajℓ). By the previous lemma Lemma 24, we have r(B) ≤ r(A).
Note that after this arrangement, we have

B1 =

(
n∑
k=1

bjk

)
1≤j≤n

= (α)1≤j≤n = α1 =⇒ α ∈ Sp(B). (4.7.8)
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Thus we have

α ≤ r(B) ≤ r(A) =⇒ min
1≤j≤n

n∑
k=1

ajk ≤ r(A). (4.7.9)

correspondingly, for β := max1≤j≤n
∑n

k=1 ajk ≥ 0. We take C := (cjk)1≤j,k≤n =
(

ajk∑n
ℓ=1 ajℓ

β
)
1≤j,k≤n

.

Then A ⊵ C holds obviously. By the previous lemma Lemma 24, we have r(C) ≤ r(A).

Let λ be in the spectrum of C such that |λ| = r(C). Let the eigenvector x =

( x1
...
xn

)
∈ Cn corre-

sponding to λ, then we have∣∣∣∣∣
n∑
k=1

cjkxk

∣∣∣∣∣ = |λxj| =⇒ r(C)|xj| ≤
(
max
1≤k≤n

|xk|
) n∑

k=1

cjk = max
1≤k≤n

|xk| · β. (4.7.10)

Thus

r(C) ≤ β · max1≤k≤n |xk|
|xj|

∀1 ≤ j ≤ n =⇒ r(C) ≤ β. (4.7.11)

Thus we have

r(A) ≤ r(C) ≤ β = max
1≤j≤n

n∑
k=1

ajk. (4.7.12)

It follows readily that we have the following proposition.

Proposition 64. Let A be a positive matrix, then we have

(1) If there exists a strictly positive vector x ∈ Cn, α > 0, such thatAx ≥ (>) αx, then r(A) ≥ (>) α;

(2) If there exists a strictly positive vector x ∈ Cn, α > 0, such that Ax = αx, then r(A) = α;

(3) If there exists a strictly positive vector x ∈ Cn, α > 0, such thatAx ≤ (<) αx, then r(A) ≤ (<) α.

Remark 77. By A positive, x positive, we have Ax ≥ 0.

Remark 78. We only prove (1) and (3). (2) follows from (1) and (3).

Proof. Since x =

( x1
...
xn

)
is strictly positive, we have X = diag(x1, · · · , xn) is invertible. Thus we have

r(A) = r(X−1AX)
Lemma 25

≥ min
1≤j≤n

ajkx
−1
j xk

Ax ≥ αx

≥ min
1≤j≤n

αxjx
−1
j = α. (4.7.13)

If Ax ≥ αx holds strictly, then the second inequality is strict, thus we have r(A) > α. Likewise we have
Ax ≤ (<) αx implies r(A) ≤ (<) α.

With the above analysis, we are now at the position to give a structural characterization of positive
matrices, particularly, their largest eigenvalue and the corresponding eigenvector.

First, we will show that the largest eigenvalue must be the spectral radius of the positive matrix.
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Proposition 65. Let A be a positive matrix, then we have r(A) ∈ Sp(A). Furthermore, there exists two
positive (non-negative) vectors x, y such that

Ax = r(A)x, yTAT = r(A)yT . (4.7.14)

Furthermore, if A is strictly positive, then x, y can be chosen to be strictly positive and unique. In this
case, the geometric multiplicity of the eigenvalue r(A) is 1.

Proof. We begin with the case of strictly positive matrices. Let λ ∈ Sp(A) such that |λ| = r(A) and
the corresponding eigenvector be v. Then we have

r(A)|v| = |λv| = |Av|
triangular inequality

≤ |A|+|v| = A|v|. (4.7.15)

Here |x| denotes taking the absolute value of the vector x entrywise. We denote

w = A|v| − r(A)|v| ≥ 0. (4.7.16)

Case 1. If w = 0, then A|v| = |λ||v|. Note that A is strictly positive, |v| ≥ 0, |v| ≠ 0, we have
A|v| > 0 is strictly positive. Thus we take x = A|v| > 0, then we have

Ax = A(A|v|) = |λ|A(|v|) = r(A)x. (4.7.17)

Case 2. If w > 0, then Aw is also strictly positive, thus

0 < Aw = A(A|v|)− |λ|(A|v|) =: Az − |λ|z. (4.7.18)

By Proposition 64, |λ| is strictly upper-bounded by r(A) i.e. r(A) > |λ|. But we know |λ| = r(A), thus
we have r(A) > r(A), which is a contradiction.

Thus we have A|v| = r(A)|v| = x.
For the uniqueness, let x′ be a real vector such that Ax′ = r(A)x′, then we can define

t∗ = min{t > 0 : tx− x′ ≥ 0} > 0. (4.7.19)

Then, t∗x − x′ ≥ 0, and there is at least one entry is 0 in t∗x − x′. If all the entries are zero i.e.
t∗x − x′ = 0, then x and x′ are proportional. Otherwise, by the strict positivity of A again, we have
A(t∗x− x′) is strictly positive, thus we have

0 < A(t∗x− x′) = r(A)(t∗x− x′), (4.7.20)

which means that t∗x − x′ is strictly positive, which contradicts the fact that t∗x − x′ ≥ 0 and at least
one entry is zero. Thus we have the uniqueness. Note that we prove the uniqueness the eigenvector of
r(A) as a real vector and not only as a strictly positive vector. Thus we can conclude that the geometric
multiplicity of the eigenvalue r(A) is 1.

For the case that A is non-negative, we only need to consider A+ ε1, where 1 = (1)1≤j,k≤n. Then
by the previous case there exists xε ∈ Sn−1 such that (A+ ε1)xε = rε(A)xε.

• First, we have

lim
ε
rε(A) = lim

ε→0
lim
m→∞

∥(A+ ε1)m∥
1
m
2 = lim

m→∞
lim
ε→0

∥(A+ ε1)m∥
1
m
2 = r(A). (4.7.21)
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• Then, by the compactness of the unit sphere Sn−1, we can take a convergent subsequence and
then take the limit to conclude that there exists some non-negative vector x ∈ Sn−1 such that
Ax = r(A)x.

We will show next that the algebraic multiplicity of the eigenvalue r(A) is also 1 for strictly posi-
tive matrix A, which rules out the possibility of the existence of nontrivial Jordan blocks (generalized
eigenspaces) corresponding to the eigenvalue r(A).

Proposition 66 (r(A) is a simple eigenvalue). Let A be a strictly positive matrix, then r(A) is a simple
eigenvalue of A .

Proof. We have shown that r(A) is at least a semisimple eigenvalue of A in Proposition 65. If it is not
simple, then there exists w ̸= 0 and w, x being linearly indepedent, such that

Aw = r(A)w + x. (4.7.22)

Taking the complex conjugate on both sides, we have

Aw = r(A)w + x. (4.7.23)

Thus W.L.O.G. we can assume that w is real. Moreover, since x is strictly positive, for t sufficiently
large, we have wt+ x > 0 and

A(wt+ x) = r(A)(wt+ x) + x. (4.7.24)

Thus again, W.L.O.G. we can assume that w itself is already strictly positive. However, since x > 0, we
have

Aw > r(A)w
Proposition 64

=⇒ r(A) > r(A), (4.7.25)

which is a contraction.

Remark 79. The above proposition is structural, which means that

A ∼
(
r(A)

B

)
. (4.7.26)

Next, we will show that there is an essential separation between the eigenvalue r(A) and the rest of
the spectrum of A.

Proposition 67. Let A be a strictly positive matrix, λ ∈ Sp(A) and λ ̸= r(A), then we have |λ| < r(A).

Proof. Assume |λ| = r(A), then

r(A)|v| = |λv| = |Av|
triangular inequality

≤ A|v|. (4.7.27)

If A|v| > r(A)|v|, then by Proposition 64 we have r(A) > r(A), which is a contradiction. Thus we have
A|v| = r(A)|v| = |Av|. By the equality condition of the triangular inequality, we have v = eiθ|v| for
some θ ∈ R which means that |v| is also an eigenvector ofA corresponding to the eigenvalue λ. However
we have shown that |v| is an eigenvector ofA corresponding to the eigenvalue r(A), thus r(A) = λwhich
is a contradiction with the assumption that λ ̸= r(A).
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Proposition 68. A is strictly positive, x, y > 0, Ax = r(A)x, yTAT = r(A)yT , and we assume that x
and y are normalized such that yTx = 1, then we have

lim
m→∞

(
A

r(A)

)m
= xyT . (4.7.28)

Proof. The proof is by direct calculation. W.L.O.G. r(A) = 1, then we have that ∃ S invertible such that

SAS−1 =

(
1

B

)
, and

lim
m→∞

SAmS−1 =

(
1

limm→∞Bm

)
r(B) < 1
=

(
1

0

)
. (4.7.29)

Let v1 =

(
1
0
...
0

)
, then we have SAS−1v1 = v1. By Proposition 65, S−1v1 = ax for some a ∈ C. Likewise

we have vT1 S = byT for some b ∈ C. On the other hand,

1 = vT1 v1 = baS−1 yTx︸︷︷︸
=1

S = ba =⇒ lim
m→∞

Am = (ab)−1S−1v1v
T
1 S = (ab)−1xyT = xyT . (4.7.30)

Remark 80. This is a structural result which gives an explicit characterization of the limit behavior of
the strictly positive matrix A.

Next, we will extend the above results from the case of strictly positive matrices to the case of irre-
ducible matrices.

Definition 4.7.2 (Irreducible matrix). A matrix A ∈Mn(C) is called reducible if there exists a permuta-
tion matrix V such that

V AV −1 =

(
B C

0(n−r)×r D

)
. (4.7.31)

We say that A is irreducible if it is not reducible.

Proposition 69. If A is positive (non-negative), then A is irreducible if and only if (I + A)n−1 is strictly
positive (i.e. (I + A)−1 ▷ 0)

Proof. exercise 30.

Theorem 4.7.3 (Perron-Frobenius theorem for matrices). Let A be a positive (non-negative) irreducible
matrix, then we have the following properties:

(1) r(A) > 0;

(2) r(A) is a simple eigenvalue of A;

(3) There exists a unique (up to a positive scalar) strictly positive eigenvector x such thatAx = r(A)x,
which is called the right Perron vector of A;

(4) There exists a unique (up to a positive scalar) strictly positive left eigenvector y such that yTA =
r(A)yT , which is called the left Perron vector of A.
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Proof. Using the characterization of irreducible matrices Proposition 69, we can apply the previous re-
sults on strictly positive matrices to obtain the result.

Next, we will consider the P-F theorem for the case of positive and strictly positive maps. We will
first give the definition of strictly positive maps.

Definition 4.7.4. Let Φ :Mm(C) →Mn(C) be a linear map. If for any A ∈Mm(C), A ≥ 0 and A ̸= 0,
we have Φ(A) > 0, then we say that Φ is a strictly positive map, denoted as Φ > 0.

Definition 4.7.5. Let Φ : Mn(C) → Mn(C) be a positive map. Let P ∈ Mn(C) be an orthogonal
projection, we say P reduces Φ if PMn(C)P is an “invariant subalgebra” with respect to Φ, i.e.

Φ(PMn(C)P ) ⊂ PMn(C)P. (4.7.32)

If there does not exist any nontrivial orthogonal projection P ∈Mn(C) that reduces Φ, then we say that
Φ is irreducible.

We have the following simple characterizations of reduction of positive maps.

Proposition 70. P reduces Φ iff (1) Φ(P ) ≤ aP for some a > 0 iff (2) I − P reduces Φ∗.

Proof. (1) “ =⇒ ” is trivial. “ ⇐= ”, if Φ(P ) ≤ aP , then

Φ(PXP )
positive maps preserve the order

≤ ∥X∥Φ(P ) ≤ a∥X∥P ∈ PMn(C)P. (4.7.33)

(2) “ =⇒ ” follows by direct calculations:

Tr(Φ∗(I − P )P ) = Tr((I − P )Φ(P )(I − P )) ≤ aTr((I − P )P ) = 0 ⇒ PΦ∗(I −P )P = 0 (4.7.34)

⇒ Φ∗(I − P )
1
2P = 0 ⇒ Φ∗(I − P )P = 0 ⇒ Φ∗(I − P ) annihilates PCn. (4.7.35)

Therefore, Range[Φ∗(I − P )] ⊂ (I − P )Cn, thus there must exist some b > 0 such that Φ∗(I − P ) ≤
b(I − P ), which means that I − P reduces Φ∗.

“ ⇐= ” is symmetric to the above argument.

To discuss the P-F theorem for positive maps, we first define the concept of the spectrum of a linear
map on matrix algebras. Then, we will give a non-trivial and abstract definition of the irreducibility of
positive maps.

Definition 4.7.6. Let Φ : Mn(C) → Mn(C) be a linear map. If there exists Ψ : Mn(C) → Mn(C) such
that Φ ◦Ψ = Ψ ◦ Φ = IMn(C), then we say that Φ is invertible and denote the inverse as Ψ = Φ−1.

We define the spectrum of Φ as

Sp(Φ) := {α ∈ C : αid − Φ is not invertible} . (4.7.36)

We also define the spectral radius of Φ as

r(Φ) := max{|α| : α ∈ Sp(Φ)}. (4.7.37)

Interestingly, we have a very similar characterization of the irreducibility of positive maps as the
irreducibility of positive matrices.
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Proposition 71. Suppose Φ : Mn(C) → Mn(C) is a positive map, then Φ is irreducible if and only if
(id + Φ)n−1 > 0.

Proof. Suppose that Φ is irreducible and 0 ̸= A ≥ 0. Let B = A + Φ(A). We will show that
PRange((id+Φ)n−1(A)) = I .

We first note that kerB ⊂ kerA. This is because if Bv = 0, then we have

v∗Av + v∗Φ(A)v = 0. (4.7.38)

However, Φ(A) ≥ 0 and A ≥ 0, thus we have v∗Av = 0 and v∗Φ(A)v = 0. Thus we have A
1
2v = 0

and Φ(A)
1
2v = 0, which means that v ∈ kerA. Since A and B are Hermitian, we have RangeA =

ker(A∗)⊥ = kerA ⊂ kerB⊥ = Range(B∗) = RangeB. Therefore, PRange(A) ≤ PRange(B).
Case 1. If PRange(B) = PRange(A), then PRange(Φ(A)) ≤ PRange(B) = PRange(A). Hence Range(Φ(A)) ⊂

Range(A) i.e. PRange(A) reduces Φ. The irreducibility of Φ implies that PRange(A) = I which is equivalent
to A being invertible. Thus kerB = kerA = 0, which means that B = (id + Φ)(A) > 0. Now we have
proved that 0 ̸= X ≥ 0 =⇒ (id +Φ)(X) > 0, thus we have (id +Φ)n−1(X) > 0 i.e. (id +Φ)n−1 > 0.

Case 2. If PRange(B) > PRange(A) i.e. Range(A) ⊊ Range(id + Φ)(A). If Range(id + Φ)k−1(A) =
Range(id+Φ)k(A) for some k− 1 = 1, · · · , n− 1, then it reduces to Case 1. If Range(id+Φ)k−1(A) ⊊
Range(id +Φ)k(A) for any k = 1, · · · , n− 1, we have that PRange((id+Φ)n−1(A)) = I by counting the rank
of the projections. This means that (id + Φ)n−1(A) is invertible i.e. (id + Φ)n−1(A) > 0, which means
that (id + A)n−1 > 0.

Remark 81. For the matrix version, we use some techniques from the graph theory to prove this char-
acterization as we do in exercise 30. For this version, it is more straightforward to use the abstract
properties of positive maps. However, the graph theory approach may provide us more information in the
positive matrix case.

With this property at hand, we can now give the P-F theorem for positive maps.

Theorem 4.7.7 (Perron-Frobenius theorem for positive maps). Suppose Φ: Mn(C) → Mn(C) is an
irreducible positive map. Then r(Φ) ∈ Sp(Φ) and there exists a unique positive definite matrix A ∈
Mn(C) up to scalar such that Φ(A) = r(Φ)A. Moreover, r(Φ) is an algebraically simple eigenvalue of
Φ.

Proof. We define the resolvent operator on Sp(Φ)c
open
⊂ C as

ϕ(z) = (zid − Φ)−1. (4.7.39)

Then ϕ is a holomorphic function on Sp(Φ)c with Taylor-series expansion

ϕ(z) =
∞∑
k=1

Φk−1

zk
. (4.7.40)

This series converges absolutely on {|z| > r(Φ)}.
We claim that r(Φ) is a singularity. Otherwise, ϕ(r(Φ)) exists and thus limz→r(Φ)Tr(Bϕ(z)(A))

exists for A,B ≥ 0. Hence

|Tr(Bϕ(z)(A))| ≤ Tr(Bϕ(|z|)(A)), ∀|z| > r(Φ). (4.7.41)



118 CHAPTER 4. COMPLETELY POSITIVE MAPS

By the Banach-Steinhaus theorem, we have ϕ(z) exists for |z| = r(Φ). This implies that ϕ is analytic
on {|z| ≥ r(Φ)} which is a contradiction to the fact that r(Φ) is the spectral radius. Thus r(Φ) is a
singularity of ϕ(z) and consequently r(Φ) ∈ Sp(Φ).

By taking the Laurent series expansion of ϕ(z) at r(Φ), we have

ϕ(z) =
∞∑

k=−ℓ

(z − r(Φ))kΦk, where Φk =
1

2πi

∮
Γ

ϕ(z)

(z − r(Φ))k+1
dz. (4.7.42)

Here, Γ is chosen to be a smooth curve in the neighborhood of r(Φ) which encloses r(Φ). Note that

Φ−ℓ = lim
z→r(Φ)

(z − r(Φ))ℓϕ(z) = lim
R∋α→r(Φ)+

(α− r(Φ))ℓ︸ ︷︷ ︸
≥0

ϕ(α)︸︷︷︸
≥0

(4.7.43)

is a positive linear map.
For any k, j ≥ −ℓ, by direct computations, we have

ΦkΦj = − 1

4π2

∮
Γk

∮
Γj

ϕ(z1)ϕ(z2)

(z1 − r(Φ))k+1(z2 − r(Φ))j+1
dz1dz2

resolvent formula
=

1

4π2

∮
Γk

∮
Γj

ϕ(z1)− ϕ(z2)

(z1 − z2)(z1 − r(Φ))k+1(z2 − r(Φ))j+1
dz1dz2

=


−Φj+1+k, k, j ≥ 0,

0, k < 0, j ≥ 0, or j < 0, k ≥ 0

Φj+1+k, k, j < 0.

(4.7.44)

Here, W.L.O.G. we assume that Γk is contained in Γj . This implies that

ϕ(z)Φ−ℓ = Φ−ℓϕ(z) =
∞∑

k=−ℓ

Φ−ℓΦk(z − r(Φ))k =
ℓ∑

k′=1

Φ−k′−ℓ+1

(z − r(Φ))k′
= (z − r(Φ))−1Φ−ℓ, (4.7.45)

which is because Φ−ℓ′ = 0 for any ℓ′ > ℓ since we note that r(Φ) is an r-order pole. This means that

(z − r(Φ))Φ−ℓϕ(z) = Φ−ℓ = (z − r(Φ))ϕ(z)Φ−ℓ. (4.7.46)

By eq. (4.7.40) and comparing the coefficient of z−2 on both sides, we have

Φ−ℓΦ− r(Φ)Φ−ℓ = 0 = ΦΦ−ℓ − r(Φ)Φ−ℓ. (4.7.47)

Therefore,
ΦΦ−ℓ = Φ−ℓΦ = r(Φ)Φ−ℓ. (4.7.48)

For any A ≥ 0, we have that

Φ(Φ−ℓ(A)) = r(Φ)Φ−ℓ(A) where Φ−ℓ(A) ≥ 0 by the previous observation eq. (4.7.43). (4.7.49)

If Φ is irreducible, then by Proposition 71, we have (id + Φ)n−1(Φ−ℓ(A)) = (r(Φ) + 1)n−1Φ−ℓ(A) > 0
i.e. Φ−ℓ(A) > 0 if Φ−ℓ(A) ̸= 0. However, when ℓ ≥ 2, Φ2

−ℓ = Φ−ℓΦ−ℓ = Φ−2ℓ+1 = 0 by eq. (4.7.44),
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which leads to a contradiction. Thus we can only have ℓ = 1 and Φ2
−1 = Φ−1−1+1 = Φ−1. From this we

can also see that Φ−1(A) > 0 is a “Perron vector” since

Φ(Φ−1(A)) = r(Φ)Φ−1(A). (4.7.50)

Now we are at the position to prove the uniqueness of “Perron vector”. Similar to the case of positive
matrices, we will actually show the uniqueness in the regime of any matrices and do not restrict to the
regime of only positive definite matrices. We suppose A ∈ H>0

n , A′ ∈ Hn (A′ is not a multiple of A),
such that Φ(A) = r(Φ)A and Φ(A′) = r(Φ)A′. Then we let t∗ = min{t : tA+ A′ ≥ 0}. Since A′ is not
a multiple of A, we have t∗A+ A′ ̸= 0, thus by the irreducibility of Φ we have

0 < (id + Φ)n−1(t∗A+ A′) = (r(Φ) + 1)n−1(t∗A+ A′) ⇒ t∗A+ A′ > 0. (4.7.51)

which is a contraction to the minimality of t∗. Thus we have the uniqueness. Suppose B ∈ Mn(C) is a
general matrix (not required to be Hermitian) such that Φ(B) = r(ϕ)B, then by considering B +B∗ and
B −B∗ we know that B is also a multiple of A, which proves that the geometric multiplicity is 1.

We already know that r(Φ) is semisimple. Suppose that r(Φ) is not an algebraically simple eigen-
value, then there exists a matrix B such that Φ(B) = r(Φ)B +A and A,B are linearly indepedent. Note
that A is a multiple of the Perron vector Φ−1(Ã), thus Φ−1(A) = A. Therefore,

Φ−1(Φ(B)) = r(Φ)Φ−1(B) + Φ−1(A) = r(Φ)Φ−1(B) + A. (4.7.52)

On the other hand,
Φ−1(Φ(B)) = Φ−1(r(Φ)B) = r(Φ)Φ−1(B), (4.7.53)

thus A = 0, which is a contradiction. We see that r(Φ) is an algebraically simple eigenvalue of Φ. This
completes the proof.

Proposition 72. Let Φ :Mn(C) →Mn(C) be an irreducible positive map, then

(1) If A > 0 such that Φ(A) ≥ αA for some α > 0, then α ≤ r(Φ);

(2) If A ≥ 0 such that Φ(A) ≤ αA for some α > 0, then α ≥ r(Φ);

(3) If A ≥ 0 such that Φ(A) = αA for some α > 0, then α = r(Φ).

Proof. Note that Φ−1 is a positive map, thus

Φ−1(Φ(A)) ≥ αΦ−1(A) ⇒ r(Φ)Φ−1(A) ≥ αΦ−1(A). (4.7.54)

Since Φ−1(A) is positive definite, we have r(Φ) ≥ α.

4.8 von Neumann inequality
Theorem 4.8.1 (Dilation theorem). Let A ∈ Mn(C), ∥A∥ ≤ 1, then ∃ a Hilbert space H and a unitary
operator U on Cn ⊕H such that for any m ∈ N, we have

Am = PUmP, where P : Cn ⊕H → Cn is the orthogonal projection. (4.8.1)
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Remark 82. This is a totally structural result, which means that any operator can be put into a “corner”
of a very large unitary operator, and the polynomial operation on the operator can be preserved.

Remark 83. If an operator V is isometric satisfying

V ∗V = I, I − V V ∗ = P, (4.8.2)

then

U =

(
V P
0 V ∗

)
(4.8.3)

is a unitary operator, which can be verified by straightforward calculations

U∗U =

(
V ∗

P V

)(
V P
0 V ∗

)
=

(
I 0
0 I

)
. (4.8.4)

Moreover, we have

Um =

(
V m ∗
0 V ∗m

)
. (4.8.5)

Proof. Let

H0 :=
⊕
j≥1

Cn :=

{
(vj)j≥1 :

∞∑
j=1

∥vj∥2 <∞, vj ∈ Cn

}
= ℓ2(N;Cn). (4.8.6)

We define V : H0 → H0 as

V (vj)j≥1 = (Av1,
√
1− A∗Av1, v2, v3, · · · ). (4.8.7)

Then we have

∥V (vj)j≥1∥2 = ∥Av1∥2 +
∥∥∥√1− A∗Av1

∥∥∥2 + ∞∑
j=2

∥vj∥2

= ⟨A∗Av1, v1⟩+ ⟨(1− A∗A)v1, v1⟩+
∞∑
j=2

∥vj∥2

= ∥v1∥2 +
∞∑
j=2

∥vj∥2

= ∥(vj)j≥1∥2.

(4.8.8)

Therefore, we have V is an isometry, i.e. V ∗V = IH0 . Moreover, by the action of V we have

V m(vj)j≥1 = (Amv1, · · · , · · · ). (4.8.9)

We define

U =

(
V I − V V ∗

V ∗

)
=

 Am︸︷︷︸
∈MC(C)

∗

∗ ∗
∗

∗ ∗

 ∈M2(C)⊗ B(H0) ∼= B(Cn ⊕H) for some H (4.8.10)

which is a unitary operator, then we have

Um =

(
V m ∗

V ∗m

)
=⇒ PUmP =

(
Am 0
0 0

)
with a bit abuse of notations

= Am. (4.8.11)
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Theorem 4.8.2 (von Neumann inequality). LetA ∈Mn(C), ∥A∥ ≤ 1, then for any polynomial p ∈ C[z],
we have

∥p(A)∥ ≤ max
|z|≤1

|p(z)|. (4.8.12)

Proof. By the dilation theorem, we have ∃ a Hilbert space H and a unitary operatorU : Cn⊕H → Cn⊕H
such that for any m ∈ N, we have

Am = PUmP, where P : Cn ⊕H → Cn is the orthogonal projection. (4.8.13)

Then we have

∥p(A)∥ = ∥Pp(U)P∥ ≤ ∥p(U)∥ = sup
λ∈Sp(U)

|f(λ)| ≤ sup
λ∈S1

|f(λ)| by the maximum theorem for hol. functions
= max

|z|≤1
|p(z)|.

(4.8.14)

We will see next that this theorem can be generalized into a more generalized form, which is stated
for positive maps. We will first give a highly non-trivial characterization of the positive map acting on
some commutative ∗-algebra.

Lemma 26. Let f(z) =
∑m

j=−m ajz
j is strictly positive on S1, then there exists a polynomial p ∈ C[z]

such that f = |p|2.

Proof. Since f is real-valued on S1, we see that aj = a−j for any j and a0 ∈ R. W.L.O.G. we assume
that am ̸= 0 then a−m ̸= 0. We denote

g(z) := zmf(z) (4.8.15)

then g(z) is a polynomial and can be extended to the whole complex plane C. Moreover, it satisfies

g(z)z−2m = g(1/z). (4.8.16)

Therefore, with respect to the distribution of the zeros of g, we claim that, if α1, · · · , αm are the zeros of
g, then 1/α1, · · · , 1/αm are also the zeros of g. Let

g1(z) = (z − α1) · · · (z − αm), g2(z) = (z − 1/α1) · · · (z − 1/αm). (4.8.17)

Then we have
g(z) = amg1(z)g2(z). (4.8.18)

Moreover, by direct calulations, we have

g2(z) = (z − 1/α1) · · · (z − 1/αm) = zm
(−1)m

α1 · · ·αm
g1(1/z). (4.8.19)

For any z ∈ S1, since f(z) > 0 and |z−m| = 1, we have

f(z) = |f(z)| =
∣∣z−mg(z)∣∣ = |g(z)| = |am||g1(z)||zm|

∣∣∣∣ (−1)m

α1 · · ·αm

∣∣∣∣|g1(1/z)|
=

|am|
|α1 · · ·αm|

|g1(z)||g1(1/z)|.
(4.8.20)
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Note that z ∈ S1, thus we have zz = |z|2 = 1 and then 1/z = z,

f(z) =
|am|

|α1 · · ·αm|
|g1(z)|2 (4.8.21)

Let p(z) =
√

|am|
|α1···αm|g1(z), then we have p(z) is a polynomial and f(z) = |p(z)|2 for any z ∈ S1.

Theorem 4.8.3. A ∈ Mn(C), ∥A∥ ≤ 1. Let Φ : C(S1) → Mn(C) is a linear map defined by its action
on polynomials

Φ(f1 + f2) = f1(A) + f2(A)
∗. (4.8.22)

Here, f1, f2 ∈ P(S1) are polynomials on S1. Then Φ must be a positive map and ∥Φ∥ ≤ ∥Φ(1)∥ ≤ 1.

Proof. By Stone-Weierstrass theorem, Φ is defined on the dense subset P(S1) + P(S1) of C(S1), where

P(S1) := {p : p ∈ P(S1)} (4.8.23)

Specifically, we define

Φ0 : P(S1) + P(S1) →Mn(C), Φ0(f + g) = f(A) + g(A)∗. (4.8.24)

We take f ≥ 0 , f ∈ P(S1) + P(S1) and consider f + ε1 > 0 for ε > 0 small. Then we have
f+ε1 ∈ P(S1)+P(S1). If we can show that Φ0(f+ε1) ≥ 0, then we have Φ0(f) ≥ 0 by the continuity
(f.d. and linear) of Φ0. Thus W.L.O.G. we assume that f is already strictly positive, and we want to show
Φ0(f) ≥ 0. By the previous Lemma 26 characterizing strictly positive elements in P(S1) + P(S1), we
have f = |p|2 for some p(z) =

∑m
j=0 ajz

j ∈ C[z]. Then we have

f(z) =
m∑
j=0

m∑
k=0

ajakz
j−k, z ∈ S1. (4.8.25)

Thus we have

Φ0(f) =
m∑
j=0

m∑
k=0

ajakAj−k, where Aj :=


Aj, j > 0,

A∗(−j), j < 0,

I, j = 0.

(4.8.26)

We claim that Φ0(f) is positive semidefinite. To see this, we calculate

⟨Φ0(f)v, v⟩ =

〈
I A∗ · · · A∗m

A
. . . . . . ...

... . . . . . . A∗

Am · · · A I


a0v

...
amv

,
a0v

...
amv

〉 . (4.8.27)

By exercise 15, the matrix

 I A∗ ··· A∗m

A
. . . . . . ...

... . . . . . . A∗
Am ··· A I

 is positive semidefinite, thus we have ⟨Φ0(f)v, v⟩ ≥ 0 for

any v ∈ Cn. Therefore, we have Φ0(f) ≥ 0. Thus Φ0 is a positive map on P(S1)+P(S1). By the density
of P(S1) + P(S1), we can uniquely and continuously extend Φ0 to a positive map Φ on C(S1), whose
positivity is preserved under continuity.

Next we will show that ∥Φ∥ ≤ 1. This follows readily by the generalized Proposition 73 below.
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Proposition 73. Ω is a compact Hausdorff space and C(Ω) is the Banach space of continuous functions
on Ω endowed with the sup-norm. Let Φ : C(Ω) → Mn(C) be a positive map. Then we have ∥Φ∥ =
∥Φ(1)∥.

Proof. Let Φ(1) ≤ I (W.L.O.G.). Then for any f ∈ C(Ω) with ∥f∥ ≤ 1.
For any ε > 0, there exist x1, · · · , xm ∈ Ω and a finite open covering {Uj}mj=1 of Ω such that

|f(x)− f(xj)| < ε, ∀x ∈ Uj, j = 1, · · · ,m (4.8.28)

using the compactness of Ω. We take {gj} the unital decomposition of 1 w.r.t. {Uj}, i.e. suppgj ⊂ Uj ,
gj ≥ 0 and

∑m
j=1 gj = 1. We let g(x) =

∑m
j=1 f(xj)gj(x). Then we have ∥f − g∥ ≤ ε. Thus we have

∥Φ(f)− Φ(g)∥ ≤ ∥Φ∥∥f − g∥ ≤ ε∥Φ∥.
On the other hand, we have

∥Φ(g)∥ =

∥∥∥∥∥
m∑
j=1

f(xj)Φ(gj)

∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥∥∥∥

Φ(g1)
1
2 · · · Φ(gm)

1
2

... . . . ...
0 · · · 0


f(x1) . . .

f(xm)


︸ ︷︷ ︸

≤1

Φ(g1)
1
2 · · · 0

... . . . ...
Φ(gm)

1
2 · · · 0


∥∥∥∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥
m∑
j=1

Φ(gj)

∥∥∥∥∥ = ∥Φ(1)∥ ≤ 1.

(4.8.29)

Thus we have
∥Φ(f)∥ ≤ ∥Φ(g)∥+ ε∥Φ∥ ≤ ∥Φ(1)∥+ ε∥Φ∥. (4.8.30)

Taking ε → 0, we have ∥Φ(f)∥ ≤ ∥Φ(1)∥ for any f ∈ C(Ω) with ∥f∥ ≤ 1. Thus we have ∥Φ∥ ≤
∥Φ(1)∥ ≤ ∥Φ∥ and thus ∥Φ∥ = ∥Φ(1)∥. In particular, we have ∥Φ∥ ≤ 1.

Corollary 22 (von Neumann inequality).

Proof. p polynomial, we take Φ(p) := p(A), then Φ(1) = I . By the above proposition, we have ∥Φ∥ = 1.
Thus

∥p(A)∥ = ∥Φ(A)∥ ≤ ∥p∥ = sup
|z|≤1

|p(z)|. (4.8.31)

Theorem 4.8.4 (The norm of positive maps). If Φ : Mm(C) → Mn(C) is a positive map, then ∥Φ∥ =
∥Φ(I)∥.

Proof. Let ∥A∥ ≤ 1, Ψ be the map defined on C(S1). By Theorem 4.8.3, we have that Ψ is a positive
map and thus

∥Φ(A)∥ = ∥Φ(Ψ(z))∥ ≤ ∥ΦΨ∥∥z∥ ≤ ∥ΦΨ∥ = ∥ΦΨ(1)∥ = ∥Φ(I)∥ (4.8.32)

Thus we have
∥Φ∥ ≤ ∥Φ(I)∥ ≤ ∥Φ∥ =⇒ ∥Φ∥ = ∥Φ(I)∥. (4.8.33)
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4.9 Exercise IV
Exercise 28. Prove Theorem 4.3.2.

Proof. Step 1. We claim that for any ∗-subalgebra A, and any B ∈ A′′, v ∈ Cn, there exists A ∈ A
such that Bv = Av.

If this has already been established, we apply this to the ∗-subalgebra

M :=



A

A
. . .

A

 = A⊗ In : A ∈ A

 ⊂Mn2(C), (4.9.1)

then for any B̃ ∈ M′′, ∃A ∈ A such that B̃v = (A⊗ In)v for v =

( v1
...
vn

)
∈ Cn2 where {v1, · · · , vn} is a

basis of Cn. Now we compute the structure of M′ =

{(
X

. . .
X

)
= X ⊗ In : X ∈ A′

}
, thus we have

M′′ =

{(
X

. . .
X

)
= X ⊗ In : X ∈ A′′

}
. W.L.O.G. we let B̃ =

(
B

. . .
B

)
= B ⊗ In for B ∈ A′′,

then we have
B̃v = (A⊗ In)v ⇒ Bvi = Avi, for i = 1, · · · , n. (4.9.2)

Thus the actions of B and A coincide on the basis thus B = A. We have proved that A′′ ⊂ A. But
A ⊂ A′′ holds trivially, thus we have A′′ = A.

Step 2. It suffices to prove the claim above. We fix any vector v ∈ Cn, let V = {Av : A ∈ A} = Av
the subspace of Cn and consider PV , the orthogonal projection onto the subspace of V .

We claim that PV ∈ A′. That is because V is A-invariant, thus we have PVAPV = APV for any
A ∈ A. By taking adjoint we have PVA∗PV = PVA

∗ for any A ∈ A. By A is a ∗-subalgebra, we have
PVAPV = PVA for any A ∈ A. Together with PVAPV = PVA we have APV = PVAPV = PVA for
any A ∈ A. Thus we have PV ∈ A′.

Therefore, ∀B ∈ A′′, BPV = PVB ⇒ V is A′′-invariant. In particular, B︸︷︷︸
∈A′′

v︸︷︷︸
∈V since A is unital

∈ V (by

V is A′′-invariant). That is, ∃A ∈ A such that Bv = Av by the definition of V .

Exercise 29 (The closedness of inverse on ∗-subalgebras). Let A be a unital ∗-subalgebra of Mn(C). Let
A ∈ A be a matrix that is invertible in Mn(C). We will show that A−1 ∈ A i.e. A|A is invertible in A.

(1) If A ∈ A is a Hermitian matrix with spectral decomposition A =
∑m

j=1 λjPj for λj ∈ R, λj ̸=
λi (j ̸= i). Then each Pj belongs to A. Moreover, for general A ∈ A (no need to be Hermitian),
eachA ∈ A can be written as a linear combination of at most 4 unitaries with each of them belongs
to A.

(2) Let B ∈ H>0
n ∩ A be a positive definite matrix in A, then B−1 ∈ A.

(3) Prove the main result.

Proof. (1) Note that

Pj =
∏

i∈{1,··· ,n}\{j}

1

λi − λj
(λiI − A). (4.9.3)
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Thus we have Pj ∈ A since A is a subalgebra. If A is contractive, then λj ∈ [−1, 1] and we can
write λj = cos θj for some θj ∈ [0, π]. Then we have

A =
m∑
j=1

cos θjPj =
m∑
j=1

eiθj + e−iθj

2
Pj =

1

2


m∑
j=1

(eiθjPj)︸ ︷︷ ︸
unitary

+
m∑
j=1

(e−iθjPj)︸ ︷︷ ︸
unitary

 . (4.9.4)

Therefore, each Hermitian matrix can be written as a linear combination of 2 unitary matrices

A =
1

2∥A∥
(U1 + U2) (4.9.5)

according to eq. (4.9.4) where U1, U2 ∈ A are unitaries. For general A ∈ A, we write

A =
1

2
(A+ A∗)︸ ︷︷ ︸

self-adjoint

+
1

2i
[i(A− A∗)]︸ ︷︷ ︸

self-adjoint

. (4.9.6)

It follows readily that each A ∈ A can be written as a linear combination of at most 4 unitaries that
come from A.

(2)
∥∥I − ∥B∥−1B

∥∥ < 1, thus we have

(∥B∥−1B)−1 =
∞∑
n=0

(I − ∥B∥−1B)︸ ︷︷ ︸
∈A

n any f.d. subalgebra is closed
∈ ∥B∥B−1 ∈ A ⇒ B−1 ∈ A. (4.9.7)

(3) For any ε > 0, A ∈ A, we have (A∗A)
1
2 ∈ A and A(A∗A+ εI)−

1
2 ∈ A. That is, if A = U |A| is the

polar decomposition of A, then both U and |A| belong to A.

Let A ∈ Mn(C) be a invertible matrix with polar decomposition A = U |A|. Then we have
A−1 = |A|−1U∗. Since A ∈ A, we have U, |A| ∈ A. By (2), we have |A|−1 ∈ A. By A is a
∗-subalgebra, we have U∗ ∈ A. Thus we have A−1 = |A|−1U∗ ∈ A.

Exercise 30. If A is positive (non-negative), then A is irreducible if and only if (I + A)n−1 is strictly
positive (i.e. (I + A)−1 ▷ 0)

(Hint: Consider Ã = I + A, then (Ãp)jk ̸= 0 if and only if there exists a path connecting vj to vk in
the directed graph Γ = (v1, · · · , vn; Ã), where vj is the j-th vertex of Γ and Ãjk > 0 means there is a
directed edge from vj to vk. Consider Ω = {v ∈ Γ : ̸ ∃ a path from v to vk0}. Then show that there is no
path between Ω and Ωc.)
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