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1 Notations

Let f be a P-periodic function. We define the Fourier series of f as

f ∼
∑
n∈Z

f̂ (n)e2πinx/P, where f̂ (n) = ( f , e2πinx) =
1
P

∫ P

0
f (x)e−2πinx/P dx. (1)

We also define the real Fourier series as

f ∼
a0

2
+

∞∑
n=1

an cos
(
2πnx

P

)
+ bn sin

(
2πnx

P

)
, (2)

where an =
2
P

∫ P

0
f (x) cos

(
2πnx

P

)
dx, bn =

2
P

∫ P

0
f (x) sin

(
2πnx

P

)
dx. (3)

The equivalence of the two definitions is given by

f̂ (n) =


a0 if n = 0,
an−ibn

2 if n > 0,
“ an−ibn

2 ” = a−n+ib−n
2 if n < 0.

(4)

We define the partial sum of the Fourier series as

S n =

n∑
k=−n

f̂ (k)e2πikx/P =
a0

2
+

n∑
k=1

ak cos
(
2πkx

P

)
+ bk sin

(
2πkx

P

)
. (5)
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For simplicity, now we assume P = 2π, then the partial sum can also be written as

S n =
1

2π

∫ π

−π

 n∑
k=−n

eik(x−t)

 f (t)dt =:
1

2π

∫ π

−π
Dn(x − t) f (t)dt =

1
2π

[Dn ∗ f ](x). (6)

Here, Dn(x) =
∑n

k=−n eikx is the Dirichlet kernel, which can be expressed as

Dn(x) =
sin((n + 1/2)x)

sin(x/2)
. (7)

Remark 1. It is very easy to verify that

1
2π

∫ π

−π
Dn(t)dt = 1, Dn(−t) = Dn(t), Dn(t) = Dn(t + 2π). (8)

2 Riemann-Lebesgue Lemma

The Riemann-Lebesgue lemma states that

Theorem 2. Let f be a P-periodic function in L1([0, P]). Then

lim
n→∞

f̂ (n) = 0. (9)

More precisely, if f ∈ L1([0, P]) (or we can understant it as f ∈ R([0, P]) and is absolutely integrable), then

lim
λ→∞

∫ P

0
f (x) cos λx dx = 0, lim

λ→∞

∫ P

0
f (x) sin λx dx = 0. (10)

3 Fourier Localization Theorem

We will show that Dn is localized around x = 0 as n → ∞. More precisely, we first rewrite the integral formula of
S n as

S n =
1

2π

∫ π

0
[ f (x + t) + f (x − t)]Dn(t)dt. (11)

Here we extend f as a 2π-periodic function on R. We note that for any δ > 0,∣∣∣∣∣ f (x + t) + f (x − t)
sin(t/2)

∣∣∣∣∣ ≤ | f (x + t)| + | f (x − t)|
sin(δ/2)

, t ∈ [δ, π]. (12)

Thus we can see that f (x+t)+ f (x−t)
sin(t/2) is absolutely integrable on t ∈ [δ, π]. By the Riemann-Lebesgue lemma, we have

lim
n→∞

∫ π

δ
Dn(t)[ f (x + t) + f (x − t)]dt = lim

n→∞

∫ π

δ
sin

(
(n +

1
2

)x
)

f (x + t) + f (x − t)
sin(t/2)

dt = 0. (13)

In other words, we have

S n =
1

2π

∫ δ

0
[ f (x + t) + f (x − t)]Dn(t)dt + o(1), (n→ ∞), (14)

We can use this to derive the pointwise convergence of the Fourier series.
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4 Dini Convergence Theorem

We study the convergence of S n at the point x0 ∈ R.
By the property of the Dirichlet kernel, we have

S n − S =
1

2π

∫ π

0
[ f (x0 + t) + f (x0 − t) − 2S ]Dn(t)dt =

1
2π

∫ δ

0
[ f (x0 + t) + f (x0 − t) − 2S ]Dn(t)dt + o(1). (15)

To obtain S n → S , we want to show the integrability of the function [ f (x0 + t) + f (x0 − t) − 2S ]/t on [0, δ]. If this
can be done, then we can apply the Riemann-Lebesgue lemma again to get the desired convergence. This is the
essence of the Dini convergence theorem.

Theorem 3 (Dini Convergence Theorem). f is a 2π-periodic function in L1([−π, π]) 1 and S n is the n-th partial
sum of the Fourier series of f .

If there exists a δ > 0 such that the function

f (x0 + t) + f (x0 − t) − 2S
t

(16)

is absolutely integrable on [0, δ], then we have

lim
n→∞

S n(x0) = S (x0). (17)

Proof. If the function f (x0+t)+ f (x0−t)−2S
t is absolutely integrable on [0, δ], then so is the function f (x0+t)+ f (x0−t)−2S

sin(t/2) .
We can then apply the Riemann-Lebesgue lemma to get∫ δ

0
[ f (x0 + t) + f (x0 − t) − 2S ]Dn(t) =

∫ δ

0
sin

(
(n +

1
2

)t
)

f (x0 + t) + f (x0 − t) − 2S
sin(t/2)

dt → 0, (n→ ∞). (18)

Together with eq. (15), we finish the proof. □

Once we have the Dini convergence theorem, we can easily show the pointwise convergence of the Fourier
series.

Theorem 4. If f is α-Lipschitz continuous at the point x0 ∈ R
2, then the Fourier series of S n satisfies

lim
n→∞

S n(x0) =
f (x0 + 0) + f (x0 − 0)

2
. (19)

Proof. We verify the integrability condition of the Dini convergence theorem. We have

| f (x0 + t) + f (x0 − t) − f (x0 + 0) − f (x0 − 0)|
t

≤
2C
t1−α . (20)

Note that 2C
t1−α is absolutely integrable on [0, δ]. Thus the result follows from the Dini convergence theorem. □

Corollary 5 (Dirichlet’s theorem). If f is a 2π-periodic function that is piecewise differentiable on [−π, π], then
for any x0 ∈ R we have

lim
n→∞

S n(x0) =
f (x0 + 0) + f (x0 − 0)

2
. (21)

1Again, this can be understood just as the Riemannian absolute integrability
2This means that there exists a constant C > 0 and a constant α > 0 such that | f (x) − f (y)| ≤ C|x − y|α for all x, y in a neighborhood of

x0. We also call this the α-Hölder condition.
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5 Uniform Convergence of Fourier Series

If f is m-times differentiable on [−π, π], with:

• Periodic boundary condition: f (k)(−π) = f (k)(π) for all 0 ≤ k < m (continuous on the torus);

• Continuity condition: f (m) is piecewise continuous on [−π, π].

Then we can obtain even stronger convergence on [−π, π].

Theorem 6. Let f be a 2π-periodic function that is m-times differentiable on [−π, π], with periodic boundary
condition and continuity condition as above. Then

| f (x) − S n(x)| ≤
εn

nm− 1
2

, (22)

where {εn} is a sequence of positive numbers that converges to 0 as n→ ∞ and does not depend on x. In particular,
this implies that the Fourier series of f converges uniformly to f on [−π, π].

Proof. • First, by the periodic boundary condition, we integrate by parts m times to obtain

f̂ (n) =
1

2π(ni)m

∫ π

−π
f (m)(x)e−inxdx =:

1
(ni)mγn. (23)

Here
γn = f̂ (m)(n) =

1
2π

∫ π

−π
f (m)(x)e−inxdx. (24)

By the Riemann-Lebesgue lemma and the continuity condition, we have |γn| → 0 as n→ ∞.

• Second, by the Bessel inequality, we have∑
n∈Z

|γn|
2 ≤

1
2π

∫ π

−π

∣∣∣ f (m)(x)
∣∣∣2dx < ∞. (25)

• Finally

| f (x) − S n(x)| =

∣∣∣∣∣∣∣∣
∑
|k|≥n+1

f̂ (k)

∣∣∣∣∣∣∣∣ eq. (23)
≤

∑
|k|≥n+1

|γk|

km

Cauchy-Schwarz
≤

 ∑
|k|≥n+1

|γk|
2

1/2  ∑
|k|≥n+1

1
k2m

1/2

≤

 ∑
|k|≥n+1

|γk|
2

1/2 (∫ ∞

n

1
x2m

)1/2

=:
εn

nm− 1
2

.

(26)

Here εn → 0 by the eq. (25).
□

6 Mean-Square Convergence of Fourier Series

The Dini convergence theorem tells us that the Fourier series in general does not pointwise converge for an inte-
grable function f on [−π, π]. However, the L2-Fourier theory will show that the Fourier series always converges in
the mean-square sense for general integrable functions.
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Proposition 7. Note that the space L2([−π, π]) of square-integrable functions on [−π, π] is a Hilbert space with the
inner product

( f , g) =
1

2π

∫ π

−π
f (x)g(x)dx. (27)

Using this inner product space structure, we have

S n( f ) = PSn[ f ], (28)

where PSn is the orthogonal projection onto the subspace Sn spanned by {eikx}nk=−n. In particular, we have for any
given complex numbers A−n, . . . , An,

∥ f − S n( f )∥L2 ≤

∥∥∥∥∥∥∥ f −
n∑

k=−n

Akeikx

∥∥∥∥∥∥∥
L2

, (29)

In particular, if we take Ak = 0, we get the Bessel inequality:∑
n∈Z

∣∣∣ f̂ (n)
∣∣∣2 ≤ ∥ f ∥2L2 . (30)

Here, we define the L2-norm of the function f on [−π, π] as

∥ f ∥L2 =
√

( f , f ) =
(

1
2π

∫ π

−π
| f (x)|2dx

) 1
2

. (31)

Theorem 8 (Parseval’s indentity). Let f ∈ L2([−π, π]). Then the Fourier series gives us an isometry between
L2([−π, π]) and ℓ2(Z), i.e., ∑

n∈Z

∣∣∣ f̂ (n)
∣∣∣2 = ∥ f ∥2L2 . (32)
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