量子物理计算方法选讲 Fall 2023

by Prof. Shuo Yang, Department of Physics, Tsinghua University

- focus on strongly correlated many-body system defined on a lattice (discrete)
- some exposure to algorithms and coding techniques
- pave the way for further theoretical study and research
- homework 80%, final project 20%, involvement 20%

main challenge: no exact ansatz, Hilbert space too large (exponential wall, curse of dimensionality); sign problem (in QMC); violate area law (in tensor network); ...

量子物理计算方法选讲 Fall 2023 Outline Chap.0 Introduction Chap.1 Exact Diagonalization Chap.2 Density Matrix Renormalization Group Traditional DMRG varMPS Infinite Time-Evolving Block Decimation method (iTEBD) Chap.3 Quantum Monte Carlo Quantum Monte Carlo Quantum Monte Carlo - world line QMC Quantum Monte Carlo - stochastic series expansion (SSE) Chap.4 Tensor Network State PEPS 2D Tensor Network

Outline

- Introduction (brief review of QM, microscopic lattice models, quantum phase transition, eigenstate decomposition, SVD, Python programming, ...)
- Exact Diagonalization (Lanczos method, time evolution)
- Density Matrix Renormalization Group (many-body entanglement, MPS and symmetry, iTEBD, variational power of MPS)
- Tensor Networks (PEPS, MERA, TRG)
- Quantum Monte Carlo (important sampling, classical MC, fermion sign problem, Determinant QMC, Integral QMC, Variational QMC, *etc*)
- Other methods (NRG, DMFT, ML)
- Summary and Discussions

Chap.0 Introduction

state space

$$|0
angle = |\uparrow
angle, \quad |1
angle = |\downarrow
angle.$$

 $\left|
ightarrow
ight
angle$, $\left|
ightarrow
ight
angle$ are eigenstates of Pauli-X operator:

$$|
ightarrow
angle = rac{1}{\sqrt{2}}(|\!\!\uparrow
angle + |\!\!\downarrow
angle), \quad |\!\!\leftarrow
angle = rac{1}{\sqrt{2}}(|\!\!\uparrow
angle - |\!\!\downarrow
angle),$$

density matrix, pure state, mixed state

measurement process: measurement operator $\{M_m\}$

probability:
$$\Pr(m) = \mathrm{Tr} ig(M_m
ho M_m^\dagger ig)$$

expectation value: $\langle \psi | O | \psi
angle$ or $\mathrm{Tr}(O
ho)$

inverse temperature (or imaginary time) $\beta = \frac{1}{k_B T}$

classical statistic:

$$(i,E_i) \quad p_i = rac{1}{Z} \exp(-eta E_i) \quad Z = \sum \exp\left(-eta E_i
ight)$$

quantum statistic:

- density matrix at the inverse temperature β : $ho_{eta} = rac{1}{Z} \exp(-\beta H)$
- partition function $Z = \mathrm{Tr}\exp(-eta H)$
- thermal average of an observable

$$\langle O \rangle = rac{1}{Z} \operatorname{Tr}(-\beta HO) = rac{\operatorname{Tr}(-\beta HO)}{\operatorname{Tr}(-\beta H)}$$

Schrodinger equation:

$$i\partial_t \ket{\psi(t)} = H \ket{\psi(t)}$$

stationary time-independent SE:

$$H\ket{\psi} = E\ket{\psi}$$

SE for density matrix (for closed system)

$$i\partial_t \rho(t) = [H, \rho(t)]$$

second quantization

- occupation number representation $|f_{d-1},\cdots,f_0
 angle$
- bosonic creation & annihilation operators

$$egin{aligned} a_p^\dagger \ket{f_{d-1}, f_{d-2}, \cdots, f_0} &= \sqrt{f_p+1} \ket{f_{d-1}, f_{d-2}, \cdots, f_p+1, \cdots, f_0}, \ a_p \ket{f_{d-1}, f_{d-2}, \cdots, f_0} &= \sqrt{f_p} \ket{f_{d-1}, f_{d-2}, \cdots, f_p-1, \cdots, f_0}. \end{aligned}$$

• fermionic creation & annihilation opertors

$$egin{aligned} &a_p \left| f_{d-1}, f_{d-2}, \cdots, f_0
ight
angle &= \delta_{f_p,1} (-1)^{\sum_{i=0}^{p-1} f_i} \left| f_{d-1}, \cdots, f_p \oplus 1, \cdots, f_0
ight
angle, \ &a_p^\dagger \left| f_{d-1}, f_{d-2}, \cdots, f_0
ight
angle &= \delta_{f_p,0} (-1)^{\sum_{i=0}^{p-1} f_i} \left| f_{d-1}, \cdots, f_p \oplus 1, \cdots, f_0
ight
angle. \end{aligned}$$

• commutation relations for bosons:

$$[a_p^\dagger,a_q^\dagger]=0, \hspace{1em} [a_p,a_q]=0, \hspace{1em} [a_p,a_q]=\delta_{pq}$$

• commutation relations for fermions:

$$\{a_i,a_j\}=\{a_i^{\dagger},a_j^{\dagger}\}=0, \quad \{a_i,a_j^{\dagger}\}=\delta_{ij}$$

tensor product state (np.kron in numpy)

Microscopic lattice model: (search the Hamiltonian)

• Hubbard model

$$H=-t\sum_{\langle i,j
angle,\sigma}c^{\dagger}_{i\sigma}c_{j\sigma}+U\sum_{i}n_{i\uparrow}n_{i\downarrow}.$$

- 1st term: describe the hopping of electrons between two neighboring sites, called hopping term
- 2nd term: describe the onsite Coulomb repulsion between two electrons occupying the same site

thinking: band structure?

• Heisenberg model

can be viewed as Hubbard model when $U \gg t$.

$$H = J \sum_{\langle i,j
angle} \mathbf{S}_i \cdot \mathbf{S}_j = J \sum_{\langle i,j
angle} (S^x_i S^x_j + S^y_i S^y_j + S^z_i S^z_j)$$

• transverse field Ising model

$$H=-J\sum_{i=1}^Nig(g\sigma^x_i+\sigma^z_i\sigma^z_{i+1}ig),\quad J,g\geq 0.$$

• quantum phase transition

phase transitions at zero temp., which occur when some parameter in the Hamiltonian is varied.

• ground state in 2 limits:

$$|G
angle = egin{cases} |\uparrow\uparrow\cdots\uparrow
angle ext{ or } |\downarrow\downarrow\cdots\downarrow
angle, \qquad g=0 \ |\rightarrow\cdots
ightarrow
angle, \qquad g
ightarrow\infty$$

Chap.1 Exact Diagonalization

- why exact diagonlization?
 - **complete and accurate** knowledge of a quantum system can be obtained.
 - **insights** gained from ED are very useful.
 - indispensable for testing the correctness and benchmarking other algorithms
 - ED provides a concrete path for learning many important aspects of QM (in particular, the **symmetry** properties of many-body states)
- Since the exponentially-scaling Hilbert space, exact diagonlization is limited to rather small spins (examples):
 - Fermionic models (Hubbard)
 - full configuration interaction (FCI) in quantum chemistry and nuclear structure
 - quantum field theory (QFT)
- Present day limits of ED:
 - \circ spin S-1/2 models:

 $N\sim 30-40$

• Hubbard models:

 $N\sim 20$

- Coding
 - Hilbert space (basic representation (real space or moment space), lookup techniques, symmetries (reduce to small blocks))
 - Hamiltonian matrix (sparsity, matrix recalculation on the fly)
 - linear algebra (eigensolver / time propagation, LAPACK full diagonalization, Lanczos type diagonalization (needs only operations))
 - observables
- Bit operations in python

(see the lecture notes)

$$H = \sum_{i=0}^{N-1} \mathbf{S}_i \cdot \mathbf{S}_{i+1} = \sum_{i=0}^{N-1} [(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+)/2 + S_i^z S_{i+1}^z]$$

diagonal&off-diagonal terms

- Symmetries
 - $\mathrm{U}(1)$ related symmetries: conservation of **particle numbers** or total S_z
 - translation symmetry (moment space)
 - parity symmetry, reflection symmetry
 - spin-inversion symmetry
 - SU(2) symmetry
 - various spatial symmetry
- Example: implement of U(1) symmetry:

consider the subspaces spanned by **these basis states** with a **conversed up spin** or particle numbers

for example, a lattice model with 4 spin sites, state with up spin= 2 can only live in a $\dim = C_4^2 = 6$ subspace: Span $(|0011\rangle, |0101\rangle, |0110\rangle, |1001\rangle, |1010\rangle, |1100\rangle)$

• Real-time evolution (RTE)

$$\ket{\psi(t)} = e^{-iHt} \ket{\psi(0)} = \sum_n e^{-iE_nt} \ket{\psi_n}\!ig\langle\psi_nig|\,\psi(0)
angle = \sum_n C_n e^{-iE_nt} \ket{\psi_n}.$$

where

$$C_n = \langle \psi_n | \psi(0)
angle$$

for efficient computation of RTE, we can use the Lanczos vectors.

• Non-Hermitian Hamitonian

$$H \ket{F_n} = \omega_n \ket{F_n}, \quad \langle G_n | H = \langle G_n | \omega_n.$$

(bi-orthogonal basis):

$$I = \sum_n rac{|F_n
angle\!\langle G_n|}{\langle G_n|F_n
angle}.$$

question: non-hermitian time-evolution?

- Implementing symmetry
 - last lecture: symmetries about spin and particle-number preservation
 - $\circ\;$ this lecture: translation (momentum space), spatial, $SU_2...$
- Dispersion relation
 - Pauli Dirac: relativistic dispersion relation:

$$E^2 = (mc^2)^2 + (pc)^2$$

- ultra-relativistic limit: E = pcnon-relativistic limit: $E = p^2/2m$
- solid physics: collection of all possible energies and momenta is known as the **band structure** of this material (e.g., insulator, semiconductor, conductor)
- Translational symmetry

- projector: $P_k = rac{1}{N} \sum_{j=0}^{N-1} e^{i rac{2\pi}{N} k j} T^j, ext{ where } j=0,\cdots,N-1$
- $\{P_k | r \}$ is eigenstates of T, with corresponding eigenvalues e^{-iK} , where $K = \frac{2\pi k}{N}$ is the discrete lattice momentum

$$\circ P_k^{\intercal} = P_k$$
, $P_k^2 = P_k$

	$ r\rangle$	$T^0 r \rangle$	$T^1 r \rangle$	$T^2 r \rangle$	$T^3 r \rangle$	$P_{k=0} r \rangle$	$P_{k=1} r \rangle$	$P_{k=2} r \rangle$	$P_{k=3} r \rangle$
$\#(\uparrow) = 0$	0000>	$ 0000\rangle$	$ 0000\rangle$	$ 0000\rangle$	$ 0000\rangle$	1	×	×	×
$\#(\uparrow) = 1$	0001>	0001>	0010>	0100>	1000>	1	1	1	1
$\#(\uparrow) = 2$	0011>	0011>	0110>	1100>	1001>	1	1	1	1
#(+) = 2	0101>	0101>	1010>	0101>	1010>	1	×	1	×
$\#(\uparrow) = 3$	0111>	0111>	1110>	1101>	$ 1011\rangle$	1	1	1	1
# (↑) = 4	1111>	1111>	1111>	1111>	1111>	1	×	×	×

representative basis; what is the corresponding representative configuration of any basis vector; the translation step

(construct an array "Check")

- Normalization and Hamiltonian
 - $\bullet \hspace{0.1 cm} |r_k\rangle = \frac{P_k |r\rangle}{\sqrt{\langle r|P_k^{\dagger}P_k|r\rangle}} = \frac{P_k |r\rangle}{\sqrt{\langle r|P_k|r\rangle}}$
 - discard those \ket{r} with $P_k \ket{r} = 0$
 - since [T,H]=0, we have $[P_k,H]=0$
 - Since H is already blockwise diagonal under $\{|r_k
 angle\}$, $\langle r'_{k'}|H\,|r_k
 angle$ must be zero for k
 eq k'

$$ig\langle r_k'ig| H \ket{r_k} = rac{ig\langle r' | P_k H \ket{r}}{\sqrt{ig\langle r' | P_k \ket{r'}ig\langle r | P_k \ket{r}}}$$

where, $\langle r|P_k|r\rangle$ can be obtained from calculation of $P_k|r\rangle$ (storing the coefficients) we may also need to look up the table to calculate $(P_k|r'\rangle, H|r\rangle)$ (can be non-zero only when representative state matches $H|r_k\rangle$)

$ 0000_{k=0}\rangle$	<i>k</i> =	0														
$ 0001_{k=0}\rangle$		<i>k</i> =	0													
$ 0001_{k=1}\rangle$			<i>k</i> =	1												
$ 0001_{k=2}\rangle$				<i>k</i> =	2											
$ 0001_{k=3}\rangle$					<i>k</i> =	3										
$ 0011_{k=0}\rangle$						L.	0									
$ 0101_{k=0}\rangle$						κ =	= 0									
$ 0011_{k=1}\rangle$								<i>k</i> =	1							
$ 0011_{k=2}\rangle$									<i>k</i> -							
$ 0101_{k=2}\rangle$									κ -	- 2						
$ 0011_{k=3}\rangle$											<i>k</i> =	3				
$ 0111_{k=0}\rangle$												k =	0			
$ 0111_{k=1}\rangle$													<i>k</i> =	1		
$ 0111_{k=2}\rangle$														<i>k</i> =	2	
$ 0111_{k=3}\rangle$															<i>k</i> =	: 3
$ 1111_{k=0}\rangle$																<i>k</i> =

- When we try to implement translational symmetry on fermionic systems, but sometimes coding is a headache (*T* may introduce additional sign)
 - apply FT to the whole Hamiltonian (into momentum space)
 - get matrix representation of T, diagonalize T to get the momentum basis
- Example: Exact solution of transverse field Ising model
 - Jordan-Wigner mapping: very powerful mapping between spin-1/2 spins and spineless fermions
 - Fourier transformation (momentum space)
 - Bogliubov transformation (based on momentum space, non-interacting single particle)
- Iterative diagonalization: variational principle

$$E[|\psi
angle] = rac{\langle \psi | H \, | \psi
angle}{\langle \psi | \psi
angle}$$

is minimized for $\psi = \psi_0$ with $E[\psi_0] = E_0$.

• Power method

$$\ket{v_n} = H^n \ket{v_0}$$

expanding in the eigenbasis:

$$|v_n
angle = H^n\left[\sum_i |i
angle\!\langle i|
ight]|v_0
angle = \sum_i \langle i|v_0
angle \lambda_i^n|i
angle$$

the state with the eigenvalue with the largest absolute value will have the highest weight after many iterations n

provided that $|v_0
angle$ has a finite overlap with this state

- very simple to implement memory efficient, only two vectors must be stored in memory
- Krylov method

$$\{\ket{v_0}, H\ket{v_0}, \cdots, H^n\ket{v_0}\}$$

nth Krylov space

an optimal linear combination of vectors approximating the extremal eigenstate exists, and the way to find it is to diagonalize H in the subspace generated by n + 1 vectors

(基本可认为能找到多个准确的低激发态)

- start from $|\phi_0\rangle$ (only need it has non-vanishing overlap of the true ground state of *H*)
- our aim: write H in as a tridiagonal matrix on a set of basis $\{|\phi_0\rangle, \cdots, |\phi_n\rangle\}$
- number of Lanczos vectors needed: in the order of few tens to hundreds
- energies often converge faster than other observables
- drawback of Krylov method: loss of generality after long iterations (sometimes leading to fake eigenvalues)
 - straightforward solution: reorthogonalize Lanczos vectors relative to each other using a modified Gram-Schmidt procedure (requires all vectors to be stored in memory, so that the advantage of memory efficiency lost)
 - or: start from the same initial state and re-calculate all vectors (after 10 to 100 Lanczos iterations, the resulting tridiagonal matrix is **diagonalized** and the **extremal eigenstate is used as starting vector** for a new Lanczos procedure)

(implicitly Lanczos method)

• Green function

inhomogeneous linear pde:

$$Df(x) = g(x)$$

particular solution:

$$f(x) = \int G(x,x')g(x')\mathrm{d}x'$$

the Green's function is defined as the solution of a differiential equation:

$$DG(x, x') = \delta(x, x')$$

• SE in real space:

$$egin{aligned} &\left[i\partial_t+rac{1}{2} riangle
ight]G(r,t;r',t')=\delta(r-r')\delta(t-t') \ \Psi(r,t)&=\int G(r,t;r',t')V(r',t')\Psi(r',t')\,\mathrm{d}^3\,r' \end{aligned}$$

Green's function is known as the propagator

Chap.2 Density Matrix Renormalization Group

Traditional DMRG

the key is to truncate the Hilbert space

challenge: select a basis that will work in general

- 1975 NRG (数值重整化群)
- 1992 DMRG (密度矩阵重整化群)
- 1D particle-in-a-box
 - $\circ \ H\psi(x)=-rac{1}{2}rac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x)+V(x)\psi(x)=E\psi(x)$ where V(x) is:

离散化:

- 有限差分 $D^2\psi(x) \approx \frac{1}{a^2}[\psi(x-a) 2\psi(x) + \psi(x+a)]$
- numbering the partition points: $H = -\sum_{l=1}^{L-1} (|l\rangle \langle l+1| + |l+1\rangle \langle l|) + 2\sum_{l=1}^{L} |l\rangle \langle l|$. (tridiagonal) e.g. L = 5:

$$H = \begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{pmatrix}.$$

• NRG method

$$H = \begin{pmatrix} H & T & \ddots & \cdots & 0 \\ T^{\dagger} & H & T & \ddots & \vdots \\ \vdots & \ddots & T^{\dagger} & H & T & \ddots \\ \vdots & \ddots & T^{\dagger} & H & \ddots \\ 0 & \cdots & \ddots & \ddots & \ddots \end{pmatrix} = \begin{pmatrix} H' & T' & 0 \\ T'^{\dagger} & H' & \ddots \\ 0 & \ddots & \ddots \end{pmatrix} \rightarrow \begin{pmatrix} H'' & T'' & 0 \\ T''^{\dagger} & H'' & \ddots \\ 0 & \ddots & \ddots \end{pmatrix}$$

- $H' = \begin{pmatrix} H & T \\ T^{\dagger} & H \end{pmatrix}$, $T' = \begin{pmatrix} 0 & 0 \\ T & 0 \end{pmatrix}$ (the size of T needn't to be 1×1 , we can consider "blockwise" tridiagonal matrix)
- diagonalize H', getting eigenvectors V_l , $H'V_n = E_n V_n$
- build matrix O using low-energy eigenvectors (project to low-lying subspace)

$$O = egin{pmatrix} | & | & | \ V_1 & V_2 & \cdots & V_m \ | & | & | \end{pmatrix}$$

change of basis, truncate

$$H'' = O^{\dagger}H'O, \quad T'' = O^{\dagger}T'O$$

• replace H and T by H'' and T'', truncate

- programming: recall np.argsort for finding low-lying eigenvectors.
- NRG fails: particle in a box eigenstates are 0 at the edges, any state formed by low-lying states has a kink in the middle to remove kink, need to keep almost all states

FIG. 1. Lowest eigenstates of two 8-site blocks (solid circles) and a 16-site block (open squares) for the one-dimensional tight-binding model with fixed boundary conditions.

consider fixed-free combination

	free	fixed					
free	$H_{11}^{'[n+1]} = \begin{pmatrix} H_{12}^{[n]} & T^{[n]} \\ T^{\dagger[n]} & H_{21}^{[n]} \end{pmatrix}, H_{11}^{'[1]} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$	$H_{12}^{'[n+1]} = \begin{pmatrix} H_{12}^{[n]} & T^{[n]} \\ T^{\dagger[n]} & H_{22}^{[n]} \end{pmatrix}, H_{12}^{'[1]} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$					
fixed	$H_{21}^{'[n+1]} = \begin{pmatrix} H_{22}^{[n]} & T^{[n]} \\ T^{\dagger[n]} & H_{21}^{[n]} \end{pmatrix}, H_{21}^{'[1]} = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$	$H_{22}^{'[n+1]} = \begin{pmatrix} H_{22}^{[n]} & T^{[n]} \\ T^{\dagger[n]} & H_{22}^{[n]} \end{pmatrix}, H_{22}^{'[1]} = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$					

free,free ; free,fixed ; fixed,free ; fixed,fixed

$$T^{'[n+1]} = \begin{pmatrix} 0 & 0 \\ T^{[n]} & 0 \end{pmatrix}, T^{'[1]} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

use the lowest m/4 states from each of $H_{11}, H_{12}, H_{21}, H_{22}$ transforming matrix:

 $O = \operatorname{Gram} - \operatorname{Schimidt}(\widetilde{O}), \quad \operatorname{range}(O) = \operatorname{range}(O)$

 $H_{11}^{[n]} = O^{\dagger}H_{11}^{\prime[n]}O, \quad H_{12}^{[n]} = O^{\dagger}H_{12}^{\prime[n]}O, \quad H_{21}^{[n]} = O^{\dagger}H_{21}^{\prime[n]}O, \quad H_{22}^{[n]} = O^{\dagger}H_{22}^{\prime[n]}O, \quad T^{[n]} = O^{\dagger}T^{\prime[n]}O$ • Tensor network

Roger Penrose's graphical notation

- Tensor contraction
 - connecting 2 index lines implies a **contraction** (summation over the same indices)

$$i \underbrace{\bigcup_{i=1}^{j} \prod_{i=1}^{j} \cdots \bigcup_{i=1}^{k} \prod_{j=1}^{l} I}_{j \in I} = i \underbrace{\bigcup_{i=1}^{k} \prod_{j=1}^{l} I}_{\sum_{j=1}^{j} A_{ij}B_{ijkl}} = C_{ikl}$$

- np.einsum
- np.tensordot(A,B,(1,0)) (contract the 1st index of A and the 0th index of B)
- some examples:

- Schmidt decomposition
 - physical meaning: bipartate a quantum system in blocks A and B, with orthogonal bases

• bipartate the indices into i and j

$$|\psi
angle = \sum_{i_1,\cdots,i_N} c_{i_1,\cdots,i_N} \ket{i_1,\cdots,i_N} = \sum_{i,j} c_{ij} \ket{i}_A \ket{j}_B$$

apply SVD on c_{ij} we have:

$$|\psi
angle = \sum_{i,j} \left[\sum_lpha \sigma_lpha u_i^lpha v_j^lpha
ight] |i
angle_A |j
angle_B = \sum_lpha \sigma_lpha |u^lpha
angle_A |v^lpha
angle_B$$

- This procedure is called Schmidt's decomposition
- (u^lpha_i) is left-isometric ($U^\dagger U=\mathrm{Id}$), (v^lpha_j) is right-isometric ($VV^\dagger=\mathrm{Id}$)

 $|u^lpha
angle_A$ and $|v^lpha
angle_B$ form orthogonal bases

graphical notation of the orthogonal condition (left-canonical and right-canonical)

- reduce density matrix of a bipartate quantum system:
 - Schmidt decomposition
 - density matrix of the whole system: $ho = |\psi
 angle\!\langle\psi|$
 - reduced density matrix: **partial trace** ($ho_A=M_A
 ho M_A^\dagger$, where $M_A={
 m Proj}_A\otimes {
 m Id}_B$) of ho

$$\rho_{A} = \operatorname{Tr}_{B} \rho = \sum_{\alpha} s_{\alpha}^{2} |u^{\alpha}\rangle \langle u^{\alpha}|_{A}$$

$$\rho_{B} = \operatorname{Tr}_{A} \rho = \sum_{\alpha} s_{\alpha}^{2} |v^{\alpha}\rangle \langle v^{\alpha}|_{B}$$

Entanglement entropy:

$$S = -\operatorname{Tr}(
ho_A\log
ho_A) = -\operatorname{Tr}(
ho_B\log
ho_B) = -\sum_lpha s_lpha^2\log s_lpha^2$$

[Example] tensor product state

$$ert \psi
angle = rac{1}{2} (ert \uparrow
angle_A + ert \downarrow
angle_A) (ert \uparrow
angle_B + ert \downarrow
angle_B).$$
 $ho_A = rac{1}{2} egin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix} = egin{bmatrix} rac{1}{\sqrt{2}} egin{pmatrix} 1 & -1 \ 1 & 1 \end{pmatrix} \end{bmatrix} egin{pmatrix} 1 & 0 \ 0 & 0 \end{pmatrix} egin{bmatrix} rac{1}{\sqrt{2}} egin{pmatrix} 1 & -1 \ 1 & 1 \end{pmatrix} \end{bmatrix}^\dagger, \quad S = -1 \cdot \log 1 - 0 \cdot \log 0 = 0$

(product state has no entanglement)

[Example] maximally entangled state

$$\ket{\psi} = rac{1}{\sqrt{2}} (\ket{\uparrow} \ket{\downarrow} + \ket{\downarrow} \ket{\uparrow})$$

$$ho_A=rac{1}{2}egin{pmatrix} 1&0\0&1 \end{pmatrix},\quad S=\log 2$$

(for d dimensional bipartate system, its maximal entanglement entropy will be $\log d$) • why can we truncate on rdm?

• given $|\psi
angle$ and an operator O_A acting on A part, the expectation value is

$$\langle O_A
angle = \langle \psi | O_A \ket{\psi} = {
m Tr}(O_A
ho_A)$$

graphically representation:

• the reduced density matrix ho_A tells us "which states are the most important" (truncate on S^2)

$$\rho_{A} \xleftarrow{U} \overset{U}{\longleftarrow} \overset{U}{\longleftarrow} \overset{U}{\longleftarrow} \overset{S}{\longleftarrow} \overset{V}{\longleftarrow} \overset{V}{\longleftarrow} \overset{V}{\longleftarrow} \overset{S}{\longleftarrow} \overset{V}{\longleftarrow} \overset{V}{\longrightarrow} \overset{V}{\to} \overset$$

• use U^{\dagger} and U to truncate the operator O_A :

$$U^{\dagger} = U^{\dagger} U^{\dagger} = U^$$

(equivalent to NRG !)

0

- Infinite DMRG algorithm
 - form Hamiltonian matrix for the superblock

(system, site, site, environment)

diagonalize the superblock Hamiltonian to find the ground state $|\psi
angle$

• form the rdm of (system+site) ρ_A

- diagonalize ho_A to find U and S and make a truncation to U and S $D_{
m sys} imes D_{
m site} o D_{
m site}.$

$$\rho_A \approx \bigcup_{\substack{U^{\dagger} \bigoplus \\ D_{\text{sys}} \\ D_{\text{sys}}}}^{S} D_{\text{sys}}$$

• form the new system block using U

- Sample code of traditional DMRG <u>https://github.com/simple-dmrg/simple-dmrg</u>
- Finite DMRG algorithm

sweep back and forth until convergence is reached

MPS & MPO

- Physical corner of Hilbert space
 - $\circ \; \ket{\psi} = \sum_{i_1,\cdots,i_N} c_{i_1,\cdots,i_N} \ket{i_1,\cdots,i_N}$, exponentially large Hilbert space
 - local Hamiltonian has only O(N) params
 - ground state must live in a **small physical corner** of Hilb. space (can be described using less params using entanglement structure)
- Recall many-body entanglement
 - Schmidt decomposition $|\psi
 angle = \sum_lpha s_lpha |u_lpha
 angle_A \otimes |v_lpha
 angle_B$
 - $\circ~$ reduced density matrix $ho_A = {
 m Tr}_B
 ho$
 - EE $S = -\operatorname{Tr}(\rho_A \log \rho_A) = -\operatorname{Tr}(\rho_B \log \rho_B) = -\sum_{\alpha} s_{\alpha}^2 \log s_{\alpha}^2.$
 - maximum possible entanglement entropy: $\log D$ (schmidt rank = *D*)
- Area Law
 - $\circ~$ entropy of reduced states scales like **the length of its boundary** ∂A

if L is the spins in the reduced states, we calculate its bipartite entanglement entropy:

gapped 1D system ground state: $S(
ho_L) \sim {
m const.}$

gapless 1D system ground state: $S(
ho_L) \sim \log L$

physical explanation: the entanglement between two regions is located around the boundary

 ∂A

• constructing MPS ansatz

our goal: construct an ansatz for quantum many-body systems which satisfies area law

- suppose each site is composed of two virtual sites
- virtual sites are placed in **maximally entangled states** $|\omega_D\rangle$, area law is automatically satisfied:

$$\bigcirc \qquad |\omega_D\rangle = \sum_{\beta=1}^D |\beta,\beta\rangle$$

 \circ map virtual sites to physical sites by the operator P:

$$P_i = \sum_{i,lpha,eta} A^{[i]}_{i,lpha,eta} \ket{i}\!\!ig\langle lpha,eta
vert.$$

(the coefficients $A_{i,\alpha,\beta}^{[i]}$ are to be determined, we called the DOF α, β virtual DOF, and i physical DOF) Therefore, we can construct the total state as:

$$|\psi
angle = igotimes_{i=1}^N P_i |\omega_D
angle^{\otimes N}$$

other perspective:

each site is described using a 3-order tensor A ($2ND^2$ parameters in total, compared to 2^N), the total state is a **contraction** of these 3-order tensor.

Under this perspective,

$$\ket{\omega_D} = \sum_{eta=1}^D \ket{etaeta} = \mathrm{Id}_{D imes D}$$

tensor network representation:

$$| \omega_D \rangle = \sum_{\beta=1}^{D} | \beta, \beta \rangle = 4 = 1 = 1_{D \times D}$$

reduced density matrix: tracing out the green framed part:

we can see easily the maximum possible EE is $2\log D$, area law is satisfied.

• expression of MPS ansatz:

two-site example:

$$\left(P_1\otimes P_2
ight)\ket{\omega_D} = \left[\sum_{i_1lphaeta}A^1_{i_1lphaeta}\ket{i_1}\!\!ig\langlelphaeta
ight] \left[\sum_{i_2eta\gamma}A^2_{i_2eta\gamma}\ket{i_2}\!\!ig\langleeta\gamma
ight] \left[\sum_eta\ket{etaeta}
ight] = \sum_{i_1i_2lphaeta\gamma}\left(A^1_{i_1lphaeta}A^2_{i_2eta\gamma}
ight)\ket{i_1i_2}\!\!ig\langlelpha\gamma
ight|.$$

1D-ring example:

$$|\Psi
angle = \sum_{i_1,\cdots,i_N} c_{i_1,\cdots,i_N} \ket{i_1,\cdots,i_N} = (P_1\otimes\cdots\otimes P_N) \ket{\omega_D}^{\otimes N} = \sum_{i_1,\cdots,i_N} \operatorname{Tr}\left[A_{i_1}^{[1]}A_{i_2}^{[2]}\cdots A_{i_N}^{[N]}
ight] \ket{i_1,\cdots i_N}$$

• Generalization: 2D PEPS (projected entangled-pair states)

• FACT: given infinitely large bond dimensions, every state can be written as an MPS: Proof:

In practice, we can have an appropriate state by choosing a finite bond dimension $D < \max(\chi)$, e.g.,

$$\chi = 1 \qquad \chi = d \qquad D \qquad D \qquad D \qquad \chi = d \qquad \chi = 1$$

 $|\psi
anglepprox$

and $D
ightarrow \infty$ is exact

- canonical form of MPS
 - MPS is not unique (up to inserting an additional matrix and its inverse)

• canonical form of MPS:

MPS that satisfies:

- the gauge degree of freedoms are fixed to correspond with the Schmidt decomposition
- Ieft and right canonical condition:

can be found using SVD:

the SVD-based construction of canonical form: can be used to **optimally** truncate the bond-dimension of a quantum state

• Textbook example: AKLT state (Affleck, Kennedy, Lieb, and Tasaki, PRL 1987)

AKLT: has a non-trivial constraint arising from the virtual-spin based AKLT construction

• AKLT state as MPS:

$$-\mathcal{P} - \mathcal{O} - \mathcal{P} -$$

$$\begin{split} |\omega\rangle &= |\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\\ \mathscr{P} &= |+\rangle\langle\uparrow\downarrow| + |0\rangle \frac{\langle\uparrow\downarrow|+\langle\downarrow\uparrow|}{\sqrt{2}} + |-\rangle\langle\downarrow\downarrow| \end{split}$$

 \circ parent Hamiltonian H of AKLT state:

$$H=\sum_{i}\Pi_{i}, \hspace{1em} \Pi_{i}|\psi_{AKLT}
angle_{N=2}=0, \hspace{1em} H\left|\psi_{AKLT}
ight
angle=0.$$

Can we construct H using MPS?

$$|\psi_{AKLT}\rangle_{N=2} =$$

$$= \begin{array}{c} D = 2 \\ \hline T \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array} \begin{array}{c} D = 2 \\ d = 3 \end{array}$$

Recall: dimension of physical index: 3, virtual index: 2

- T: a map from the $|\mathbf{v}\rangle$ space to the $|\mathbf{p}\rangle$ space
- Ieft inverse of T:

$$\hat{T} = \hat{I}$$

Iocal parent Hamiltonian:

$$\hat{\Pi}_{N=2} = \hat{I} - \hat{T}^{-1}$$

verification:

$$\hat{\Pi}_{N=2}\hat{T} = \begin{array}{ccc} & \hat{T} & & \hat{T} \\ & & \hat{T}^{-1} \\ & & \hat{T}^{-1} \end{array} = \begin{array}{ccc} & \hat{T} & & \\ & & \hat{T} \\ & & \hat{T} \end{array} = 0$$

- Non-Hermitian Parent Hamiltonian (PRL 130, 220401 (2023))
- States with exact matrix product form
 - GHZ state:

• W state:

$$\ket{\psi} = \ket{0\cdots01} + \ket{0\cdots010} + \cdots + \ket{1\cdots000}$$

- MPO (Matrix Product Operator)
 - open boundary condition

upper and down: physical bonds

left and right: virtual bonds

- construct MPO of general Hamiltonian: SVD + contraction
- construct MPO of simple Hamiltonian: graph method
 - regard M as a matrix:

 $\rm MPO \rightarrow matrix$ elements are physical operators

Example:

$$H=\sum_j S^x_j S^x_{j+1}, \quad (N=4)$$

How to generalize these $3\ {\rm terms}?$ Write as "finite" state automata:

then we can read the component tensors directly from the graph.

$$H = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} S^0 & S^x & 0 \\ 0 & 0 & S^x \\ 0 & 0 & S^0 \end{pmatrix} \begin{pmatrix} S^0 & S^x & 0 \\ 0 & 0 & S^x \\ 0 & 0 & S^0 \end{pmatrix} \begin{pmatrix} S^0 & S^x & 0 \\ 0 & 0 & S^x \\ 0 & 0 & S^0 \end{pmatrix} \begin{pmatrix} S^0 & S^x & 0 \\ 0 & 0 & S^x \\ 0 & 0 & S^0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

varMPS

• Setting: given a Hamiltonian, we may find its ground state energy by minimizing its energy E.G. 1D system with OBC:

the little square on the left: can be viewed as having a 1-dimensional index

• If we use the canonical form of MPS:

L: left-canonical; R: right-canonical

Q: How to find canonical form using QR or LQ?

• QR decomposition:

将张量A的"矩阵化"做QR分解

(pushing from left to right)

LQ decomposition:
 将张量A的"矩阵化"做LQ分解

(pushing from right to left)

for periodic boundary condition system: more complicated

- Variational MPS algorithm (1-site OBC)
 - with open boundary condition and canonical form, we only need to optimize:

 $\circ\;$ idea: we may fix all T_L and T_R and only optimize $T_{
m mix}$

we optimal T_{mix} can be found by solving the **eigenvalue problem**:

 $H_{
m eff}$ has 6 open indices in all, we can reshape it into a 2-order tensor (a Hermitian matrix)

$$\overset{T_{\text{mix}}}{-} \overset{-}{-} \overset{$$

Similarly, T_{mix} can be reshaped into a "vector" ${f x}.$

Minimizing $\mathbf{x}^{\dagger} H_{\text{eff}} \mathbf{x} \leftarrow \text{diagonalizing } H_{\text{eff}}.$

• we optimize each site one by one, sweeping back and forth until convergence is reached.

• Variational MPS algorithm (2-site OBC) another option: optimize two sites at once:

the optimal $T_{
m mix}$ can be found, solving the eigenvalue problem: $H_{
m eff}{f x}=E{f x}.$

$$H_{\text{eff}} = \bigcup_{i=1}^{T_{\text{mix}}} - \bigcup_{i=1}^{T_{\text{mix}}} \bigcup_{i=1}$$

then we move on to the next two sites using SVD:

• Variational MPS algorithm (1-site PBC)

- $\circ\;$ because of PBC, $\langle\psi|\psi
 angle
 eq 1$, even if we use the canonical form of MPS
- but we still use the canonical form for numerical stabilization
- $\circ~$ we need to solve: a generalized eigenvalue problem $H_{
 m eff}X=EN_{
 m eff}X$

$$\overset{T_{\text{mix}}}{- \ensuremath{ \bullet }} = \overset{X}{\bigoplus} \qquad \overset{- \ensuremath{ \bullet }}{- \ensuremath{ T_{\text{mix}}}} = \overset{\coprod}{- \overset{\coprod}{- \ensuremath{ \bullet }}} = \overset{\coprod}{- \overset{\coprod}{- \overset{\coprod}{- \ensuremath{ \bullet }}} = \overset{\coprod}{- \overset{\coprod}{- \overset{\coprod}{- \ensuremath{ \bullet }}} = \overset{\coprod}{- \overset{\coprod}{- \ensuremath{ \bullet }} = \overset{\coprod}{- \overset{\coprod}{- \overset{\coprod}{- \ensuremath{ \bullet }} = \overset{\coprod}{- \overset{\coprod}{- \overset{\blacksquare}{- \ensuremath{ \bullet }} = \overset{\underset}{- \overset{\coprod}{- \overset{\coprod}{- \overset{I}{- \ensuremath{ \bullet }} = \overset{\underset}{- \overset{I}{- \overset{I}{- \ensuremath{ \bullet }} = \overset{I}{- \overset{I}{- \overset{I}{- \ensuremath{ \bullet }} = \overset{I}{- \overset{I}{- \overset{I}{- \ensuremath{ \bullet }} = \overset{I}{- \overset{I}{- \overset{I}{- \overset{I}{- \r}} = \overset{I}{- \overset{I}{- \overset{I}{- \r}} = \overset{I}{- \overset{I}{- \overset{I}{- \r}} = \overset{I}{- \overset{I}{- \r} = \overset{I}{- \overset{I}{- \r} = \overset{I}{- \overset{I}{- \r} = \overset{I}{- \r} = \overset{I}{- \overset{I}{- \r} = \overset{I}{- \r} = \overset{I}{- \overset{I}{- \r} = \overset{I}{- \r} = \overset{I}{- \r} = \overset{I}{- \overset{I}{- \r} = \overset{I}{- \r}$$

- $T_{
 m mix}$ corresponds to the ground state of $H_{
 m eff}$ in the presence of $N_{
 m eff}$
- Subroutine for tensor operations
 - NCon(Tensors, Indices) rules:
 - all tensors have their own index order, labeled by $0, 1, 2, \cdots$ in black
 - all indices to be contracted are labeled by $1,2,3,\cdots$ in red
 - all indices to be left open are labeled by negative numbers $-1, -2, -3, \cdots$ in red, they become the indices of the final tensor with index order $0, 1, 2, \cdots$ respectively
 - tensors are contracted one by one according to the contraction order $1, 2, 3, \cdots$

more convenient than numpy.TensorDot of numpy.einsum

• choice of contraction order: avoiding successive contraction of virtual indices:

computational cost:	best
$6dD^3 + dD^2$	order

computational cost: $2(d^2 + d^3 + d^4 + d^5 + d^6) D^3 + d^6 D^2$ worst order

computational cost:
2
$$(d^2 + d^3 + d^4 + d^5) D^3 + d^6 D^3 + dD^2$$

• group tensor indices to form a new tensor: Group(A, shape A)

- code: F = Group(A, [[0, 4], [1, 5], [2, 6], [3, 7]])subsubsubsubsubindex from 0 from 1 from 2 from 3
- equivalence between traditional finite-size DMRG and variational MPS
 - in the traditional DMRG scheme, we grow blocks while decimating basis

recursion easily expressed as matrix multiplication:

• iDMRG in the age of MPS (omit)

Infinite Time-Evolving Block Decimation method (iTEBD)

• imaginary-time evolution (ITE):

$$U(au)=e^{-H au}, \quad |G
angle=\lim_{ au o\infty}e^{- au H}\,|\psi_0
angle, \quad ext{where} \quad \langle\psi_0|G
angle
eq 0$$

• Hamiltonian includes odd terms and even terms (each term involves 2 sites)

$$H = H_{\mathrm{odd}} + H_{\mathrm{even}} = \sum_{i = \mathrm{odd}} h_{i,i+1} + \sum_{i = \mathrm{even}} h_{i,i+1},$$

 $[H_{
m odd}, H_{
m even}]
eq 0$

Trotter-Suzuki decomposition

- first order $e^{(V+W)\delta} = e^{V\delta}e^{W\delta} + \mathcal{O}(\delta^2)$
- $\circ~~$ second order $e^{(V+W)\delta}=e^{V\delta/2}e^{W\delta/2}e^{V\delta/2}+\mathcal{O}(\delta^3)$

After Trotter, the evolution operator U(au) becomes:

$$U = \prod_{M o \infty} U(\delta au) = \prod_{M o \infty} \left[\prod_{i = ext{odd}} U_{i,i+1}(\delta au)
ight] \left[\prod_{i = ext{even}} U_{i,i+1}(\delta au)
ight]$$

where

• local update of an MPS

(Tl, Gm, Tr are updated to new values while Gl and Gr remain the same)

• calculate physical quantities: single- or two- body operator

- several applications:
 - Transfer operator and correlation length
 - vMPS for excited states
 - effective Hamiltonian $H^{[1]}=H-E_0\ket{\psi_0}\!\!ig\langle\psi_0|$, $H^{[2]}=H-E_0\ket{\psi_0}\!\!ig\langle\psi_0|-E_1\ket{\psi_1}\!\!ig\langle\psi_1|$
 - quasiparticle ansatz
 - optimal ground-state MPS by standard sweeping algorithm:

similar ansatz for excited states:

$$|\Phi(B_1,\ldots,B_N)\rangle = \sum_i \underbrace{A_1}_{\top} \underbrace{ \cdots }_{\top} \underbrace{B_i}_{\top} \underbrace{ \cdots }_{\top} \underbrace{A_N}_{\top}$$

to ensure the orthogonality condition, B_i should live in the null space of $(A_i^l)^{\dagger}$, the V_i tensor satisfies the conditions:

$$-\underline{B_i} = -\underline{V_i} - \underline{X_i} - \underline{X_i} = 0. \qquad (\underline{V_i} - \underline{X_i}) = 0.$$

- excitation ansatz with OBC MPS
- multi-target MPS (T.Xiang, arXiv:2305.15868)

- 2D DMRG
 - spin-liquid ground state of the S = 1/2 Kagome Heisenberg antiferromagent

Spin-Liquid Ground State of the *S* = 1/2 Kagome Heisenberg Antiferromagnet

Simeng Yan,¹ David A. Huse,^{2,3} Steven R. White¹*

We use the density matrix renormalization group to perform accurate calculations of the ground state of the nearest-neighbor quantum spin S = 1/2 Heisenberg antiferromagnet on the kagome lattice. We study this model on numerous long cylinders with circumferences up to 12 lattice spacings. Through a combination of very-low-energy and small finite-size effects, our results provide strong evidence that, for the infinite two-dimensional system, the ground state of this model is a fully gapped spin liquid.

COVER

Three possible phases of the kagome Heisenberg antiferromagnet, a model of geometrically "frustrated" magnetism: the diamondpattern valence bond crystal (lower left), honeycomb valence bond crystal (lower right), and quantum spin liquid (upper empty wedge). Deviations of bond strengths from their average values are shown by bond widths and colors (red, stronger; blue, weaker). The simulations of Yan *et al.* (p. 1173) show that the true ground-state phase is the quantum spin liquid.

- fractional Chern insulators
- time dependent DMRG
- tangent space method
 - construct the tangent space on the MPS manifold (the space that contains low-energy dynamics)
 - real-time evolution elementary ex

Chap.3 Quantum Monte Carlo

What is Monte Carlo:

- a **very broad** calls of computational algorithms that rely on **repeated random** sampling to obtain numerical results.
- essential idea: use randomness to solve problems that might be deterministic in principle.

Modern version of Monte Carlo:

- first invented in the late 1940s by *Stanislaw Ulam*, while he was working on nuclear weapons projects at Los Alamos National laboratory. (central to the simulations required for the Manhattan Project)
- (name from the Monte Carlo Casino in Monaco)

Tranditional Monte Carlo

• naive numerical integration using Monte Carlo:

$$\int_a^b f(x) \mathrm{d}x pprox (b-a) rac{1}{N} \sum_{i=1}^N f(x_i) = (b-a) raket{f}.$$

Due to CLT (central limit theorem), the Monte Carlo error decreases with sample size N, as:

$$\varepsilon \propto \frac{1}{\sqrt{N}}$$

- Importance sampling:
 - concentrate the sampling on regions where f(x) is large, using a statistical weight $\omega(x) > 0$ (weight function) with:

$$\int_a^b \omega(x) = 1,$$

the sampling then becomes:

$$egin{aligned} \langle f
angle &= \int rac{f(x)}{\omega(x)} \omega(x) \mathrm{d}x \simeq rac{1}{N} \sum_{i=1}^N rac{f(x_i)}{\omega(x_i)} \mathrm{d}x \ \mathrm{Var} \left\langle f
ight
angle & o \mathrm{Var} \left\langle rac{f}{\omega}
ight
angle &= rac{1}{n} \mathrm{Var} rac{f}{\omega}. \end{aligned}$$

in order to keep the variance small, the distribution ω should be similar to f • example of importance sampling:

$$\langle A
angle = rac{\sum_n e^{-eta E_n} A_n}{Z}$$

choose a subset of microstates $\{x_i\}$ with probability distribution:

$$\omega(\{x_i\}) = e^{-\beta E(\{x_i\})}$$

then the average becomes:

$$\langle A
angle = rac{rac{1}{N} \sum_{i=1}^{N} rac{e^{-eta E(\{x\}_i)}}{\omega(\{x\}_i)} A\left(\{x\}_i
ight)}{rac{1}{N} \sum_{i=1}^{N} rac{e^{-eta E(\{x\}_i)}}{\omega(\{x\}_i)}} \simeq rac{1}{N} \sum_{i=1}^{N} A\left(\{x\}_i
ight)$$

the next question is how to generate random variable $\{x_i\}$ with desired probability distribution $\omega(\{x_i\})$? • Acceptance-rejection sampling

• suppose: we want to sample from f(x) (which is difficult or impossible to sample from directly), but instead have a simpler distribution q(x) from which sampling is easy.

- a lot of rejections can take place before a useful sample is generated, thus making the algorithm inefficient and impractical
- Markov chain
 - Markov process is a stochastic process (a sequence of random variables $x_0, \cdots, x_n, \cdots,)$

the probability of moving to the next state depends only on the present state and not on the previous states.

$$P(x_{n+1}|x_0,\cdots,x_n)=P(x_{n+1}|x_n)$$

• we use a Markov process repeatedly to generate a Markov chain of states

characterization of a Markov chain:

initial probability distribution $P(x_0)$, and the transition probability $W(x_n o x_{n+1})$

• equilibrium condition:

$$\sum_y P(x)W(x o y) = \sum_y P(y)W(y o x)$$

conditions to satisfy:

1. $\sum_y W(x o y) = 1$, therefore the equilibrium condition is simplify to:

$$P(x) = \sum_y P(y) W(y o x).$$

- 2. ergodicity: it should be possible to reach any state from any other state, if we run it for long enough
- 3. detailed balance:

$$P(x)W(x
ightarrow y)=P(y)W(y
ightarrow x)$$

on average the system should go from x to y just as often as it goes from y to x

- Metropolis-Hasting algorithm
 - two parts of transition probability:

$$W(x
ightarrow y) = Q(x
ightarrow y) A(x
ightarrow y)$$

Q(x
ightarrow y) is selection probability: Q(x
ightarrow y) = P(y|x)

 $A(x \to y)$ is **acceptance probability**: $A(x \to y) \in (0, 1)$ (acceptance ratio), if we start from x and our algorithm generates a new state y from it, we can accept or reject state y with

 $\circ \ \, {\rm for \ each } t$

.

- randomly generate a candidate state y according to Q(x
 ightarrow y)
- calculate the acceptance probability:

$$A(x,y) = \min\left\{1, rac{P(y)}{P(x)}
ight\}$$
 (Metropolis) $= \min\left\{1, rac{P(y)Q(y o x)}{P(x)Q(x o y)}
ight\}$ (Metropolis-Hasting)

• generate a u from U(0,1)

if $u \leq A(x,y)$, accept the new state and set $x_{t+1} = y$

if u>A(x,y), reject the new state and copy the old state forward $x_{t+1}=x.$

- we can easily verify that the choice of Q and A ensures the **detailed balance condition**
- Example: Monte-Carlo simulation of classical Ising model
 - choose an initial configuration for the spins
 - we propose a move by randomly choosing a spin and flip it
 - acceptation
 - $\sigma_j
 ightarrow -\sigma_j$, flip the j-th spin
 - evaluate:

$$lpha = \exp(-eta \Delta E), \quad \Delta E = 2\sigma_j \left(J \sum \sigma_{
m near} - H
ight)$$

- then we generate a uniform random number $r \in (0, 1)$
 - r < lpha, accept the move, $\{\sigma_{
 m new}\} = \{\sigma_{
 m trial}\}$
 - r > lpha, reject the move, $\{\sigma_{
 m new}\}$ remains the same
- iteration: use new configuration as the new starting point and go back to the trial step
- equilibration: we discard the first steps of the random walk, when the distribution of the sampled Markov chain has not yet reached its limit P(x)
- data blocking

Quantum Monte Carlo - world line QMC

- $\langle A \rangle = rac{1}{Z} {
 m Tr} \{ A e^{-\beta H} \}$ thermal expectation value where eta = 1/T and possibly T o 0
- $Z = \text{Tr}\{e^{-\beta H}\} = \text{Tr}\{\prod_{l=1}^{L} e^{-\Delta_{\tau} H}\}$, $\Delta_{\tau} = \beta/L$ (time slicing of the partition function) choose a basis and insert complete sets of states:

$$Z = \sum_{lpha_0, \cdots, lpha_{L-1}} raket{lpha_0 | e^{-\Delta_ au H} | lpha_{L-1}} \cdots raket{lpha_2 | e^{-\Delta_ au H} | lpha_1} raket{lpha_1 | e^{-\Delta_ au H} | lpha_0}$$

use approximation for imaginary time evolution operator

$$Z pprox \sum_{\{lpha\}} raket{lpha_0 | 1 - \Delta_ au H | lpha_{L-1}
angle \cdots raket{lpha_2 | 1 - \Delta_ au H | lpha_1
angle raket{lpha_1 | 1 - \Delta_ au H | lpha_0}$$

leads to error $\propto \Delta_{ au}$

• we can compute the weights for the different time periodic paths

 $lpha_0 o lpha_1 o \dots o lpha_{L-1} o lpha_0,$

these paths are importance sampled according to their weight

• After detailed equilibrium is reached, the expectation value of the operator O is:

$$\langle O
angle = rac{1}{Z} \mathrm{Tr} ig(O e^{-eta H} ig) = rac{1}{Z} \sum_{\{lpha\}} \langle lpha_0 | e^{-\Delta_ au H} | lpha_{L-1}
angle \cdots \langle lpha_2 | e^{-\Delta_ au H} | lpha_1
angle \langle lpha_1 | e^{-\Delta_ au H} O | lpha_0
angle.$$

write this in a form suitable for MC importance sampling:

$$\langle O
angle = rac{\sum_{\{lpha\}} O(\{lpha\}) W(\{lpha\})}{\sum_{\{lpha\}} W(\{lpha\})}$$

W — weight, O — estimator

Quantum Monte Carlo - stochastic series expansion (SSE)

• Taylor expansion of the Boltzmann operator:

$$e^{-eta H} = \sum_{n=0}^\infty rac{(-eta)^n}{n!} H^n,$$

choosing a basis, the partition function can be written as:

$$Z = \sum_{n=0}^{\infty} rac{(-eta)^n}{n!} \sum_{\{lpha\}_n} raket{lpha_0|H|lpha_{n-1}} \cdots raket{lpha_2|H|lpha_1} raket{lpha_1|H|lpha_0}_{lpha_0}$$

for any model, the energy is:

$$\begin{split} E &= \frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\{\alpha\}_{n+1}} \langle \alpha_0 | H | \alpha_{n-1} \rangle \cdots \langle \alpha_2 | H | \alpha_1 \rangle \langle \alpha_1 | H | \alpha_0 \rangle \\ &= -\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^n}{n!} \cdot \frac{n}{\beta} \sum_{\{\alpha\}_n} \langle \alpha_0 | H | \alpha_{n-1} \rangle \cdots \langle \alpha_2 | H | \alpha_1 \rangle \langle \alpha_1 | H | \alpha_0 \rangle \\ &= -\frac{\langle n \rangle}{\beta}, \end{split}$$

• **fixed length scheme**: cut-off at n = L, fill in with unit operators *I*:

$$Z = \sum_{S} rac{(-eta)^n (L-n)!}{L!} \sum_{\{lpha\}_L} \sum_{\{S_i\}} raket{lpha_0 | S_L | lpha_{L-1}} \cdots raket{lpha_2 | S_2 | lpha_1} raket{lpha_1 | lpha_0}$$

here, n is the number of $S_i = H$ instances in the sequence S

- frustrated systems have sign problems
- updating process

Chap.4 Tensor Network State

Outline: Projected Entangled-Pair States (PEPS, with application in topological order), 2D tensor network algorithms, Multi-scale Entanglement Renormalization Ansatz (多尺度纠缠重整化, MERA), etc.

PEPS

• representation of some simple states:

• product state

$$ert \psi
angle = (lpha ert 0
angle + eta ert 1
angle)^{\otimes N}$$

= $lpha ert 0
angle \left\langle \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} ert + eta ert 1
angle \left\langle \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} ert , \qquad ert \omega
angle = ert 0, 0
angle$

"project out virtual freedoms, reconstruct physical freedoms":

 \mathcal{P}

product state needs only $1\, {\rm virtual}$ freedoms and $2\, {\rm physical}$ freedoms

• GHZ state $|\psi
angle = |0\cdots 0
angle + |1\cdots 1
angle$

$$\mathcal{P} = |0\rangle \left\langle \begin{array}{cc} 0 \\ 0 \\ 0 \end{array} \right| + |1\rangle \left\langle \begin{array}{cc} 1 \\ 1 \\ 1 \end{array} \right|, \qquad |\omega\rangle = |0,0\rangle + |1,1\rangle$$

product state needs 2 virtual freedoms

• RVB state (resonated valence bond state)

$$|\psi\rangle = \begin{vmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \\$$

virtual freedoms: 3

• Kitaev's toric code: the simplest and most well studied spin model with topological order

$$H = -\sum_{v} \prod_{j \in \text{Vertex}} Z_j - \sum_{p} \prod_{j \in \text{Plaquatte}} X_j,$$

ground states are equal weight superposition of ALL CLOSED LOOPS

PEPS representation?

physical freedoms: 16, virtual freedoms: 2 (red or black) non-trivial elements: satisfying [[i+j]] = mod(i+j,2)Another representation:

• the total number of <u>-o</u> at every vertex must be even

• non-trivial elements of PEPS

vertex tensor
$$0 \xrightarrow{0}{+} 0 = 1 \xrightarrow{0}{+} 1 = 0 \xrightarrow{1}{+} 0 = 0 \xrightarrow{1}{+} 1 = 1 \xrightarrow{1}{+} 0 = 1 \xrightarrow{0}{+} 0 = 0 \xrightarrow{0}{+} 1 = 1 \xrightarrow{1}{+} 1 = 1$$

bond tensor $0 \xrightarrow{0}{-} 0 = 1 \xrightarrow{0}{-} 0 = 1 \xrightarrow{0}{+} 0 = 0 \xrightarrow{1}{+} 1 = 1$

2D Tensor Network

• exact contraction of PEPS is a #P hard problem

approximation methods to contract 2D tensor networks:

boundary MPS

corner transfer matrices

tensor coarse-graining