
量子物理计算方法选讲 Fall 2023  
by Prof. Shuo Yang, Department of Physics, Tsinghua University

focus on strongly correlated many-body system defined on a lattice (discrete)

some exposure to algorithms and coding techniques

pave the way for further theoretical study and research

homework 80%，final project 20%，involvement 20%

main challenge: no exact ansatz, Hilbert space too large (exponential wall, curse of dimensionality); sign problem (in 
QMC); violate area law (in tensor network); ...

量子物理计算方法选讲 Fall 2023
Outline
Chap.0 Introduction
Chap.1 Exact Diagonalization
Chap.2 Density Matrix Renormalization Group

Traditional DMRG
varMPS
Infinite Time-Evolving Block Decimation method (iTEBD)

Chap.3 Quantum Monte Carlo
Tranditional Monte Carlo
Quantum Monte Carlo - world line QMC
Quantum Monte Carlo - stochastic series expansion (SSE)

Chap.4 Tensor Network State
PEPS
2D Tensor Network

Outline  

Introduction (brief review of QM, microscopic lattice models, quantum phase transition, eigenstate decomposition, 
SVD, Python programming, ...)

Exact Diagonalization (Lanczos method, time evolution)

Density Matrix Renormalization Group (many-body entanglement, MPS and symmetry, iTEBD, variational power of 
MPS)

Tensor Networks (PEPS, MERA, TRG)

Quantum Monte Carlo (important sampling, classical MC, fermion sign problem, Determinant QMC, Integral QMC, 
Variational QMC, etc)

Other methods (NRG, DMFT, ML)

Summary and Discussions

Chap.0 Introduction  

state space

，   are eigenstates of Pauli-  operator:

density matrix, pure state, mixed state

measurement process: measurement operator 

probability: 

expectation value:  or 

inverse temperature (or imaginary time) 
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classical statistic:

quantum statistic:

density matrix at the inverse temperature : 

partition function 

thermal average of an observable

Schrodinger equation:

stationary time-independent SE:

SE for density matrix (for closed system)

second quantization

occupation number representation 

bosonic creation & annihilation operators

fermionic creation & annihilation opertors

commutation relations for bosons:

commutation relations for fermions:

tensor product state（np.kron in numpy）

Microscopic lattice model: (search the Hamiltonian)

Hubbard model

1st term: describe the hopping of electrons between two neighboring sites, called hopping term

2nd term: describe the onsite Coulomb repulsion between two electrons occupying the same site



thinking: band structure?
Heisenberg model

can be viewed as Hubbard model when .

transverse field Ising model

quantum phase transition

phase transitions at zero temp., which occur when some parameter in the Hamiltonian is varied.

ground state in  limits:

Chap.1 Exact Diagonalization  

why exact diagonlization?

complete and accurate knowledge of a quantum system can be obtained.

insights gained from ED are very useful.

indispensable for testing the correctness and benchmarking other algorithms

ED provides a concrete path for learning many important aspects of QM (in particular, the symmetry 
properties of many-body states)

Since the exponentially-scaling Hilbert space, exact diagonlization is limited to rather small spins (examples):

Fermionic models (Hubbard)

full configuration interaction (FCI) in quantum chemistry and nuclear structure

quantum field theory (QFT)

Present day limits of ED:

spin  models:

Hubbard models:

Coding

Hilbert space (basic representation (real space or moment space), lookup techniques, symmetries (reduce to 
small blocks))

Hamiltonian matrix (sparsity, matrix recalculation on the fly)

linear algebra (eigensolver / time propagation, LAPACK full diagonalization, Lanczos type diagonalization 
(needs only operations))

observables

Bit operations in python

(see the lecture notes)
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diagonal&off-diagonal terms

Symmetries

 related symmetries: conservation of particle numbers or total 

translation symmetry (moment space)

parity symmetry, reflection symmetry

spin-inversion symmetry

 symmetry

various spatial symmetry

Example: implement of  symmetry:

consider the subspaces spanned by these basis states with a conversed up spin or particle numbers

for example, a lattice model with  spin sites, state with up spin  can only live in a   subspace: 

Real-time evolution (RTE)

where

for efficient computation of RTE, we can use the Lanczos vectors.

Non-Hermitian Hamitonian

(bi-orthogonal basis):

question: non-hermitian time-evolution?

Implementing symmetry

last lecture: symmetries about spin and particle-number preservation

this lecture: translation (momentum space), spatial, ...

Dispersion relation

Pauli Dirac: relativistic dispersion relation:

ultra-relativistic limit: 

non-relativistic limit: 

solid physics: collection of all possible energies and momenta is known as the band structure of this material

(e.g., insulator, semiconductor, conductor)

Translational symmetry

projector: 

 is eigenstates of , with corresponding eigenvalues , where  is the discrete lattice 
momentum

，



 

representative basis; what is the corresponding representative configuration of any basis vector; the 
translation step

(construct an array "Check")

Normalization and Hamiltonian

discard those  with 

since , we have 

Since  is already blockwise diagonal under ,  must be zero for 

where,  can be obtained from calculation of  (storing the coefficients)

we may also need to look up the table to calculate  (can be non-zero only when 
representative state matches )

 

When we try to implement translational symmetry on fermionic systems, but sometimes coding is a 
headache (  may introduce additional sign)

apply FT to the whole Hamiltonian (into momentum space)

get matrix representation of , diagonalize  to get the momentum basis
Example: Exact solution of transverse field Ising model

Jordan-Wigner mapping: very powerful mapping between spin-1/2 spins and spineless fermions

Fourier transformation (momentum space)

Bogliubov transformation (based on momentum space, non-interacting single particle)

Iterative diagonalization: variational principle



is minimized for  with .

Power method

  expanding in the eigenbasis:

  the state with the eigenvalue with the largest absolute value will have the highest weight after many 
iterations 

  provided that  has a finite overlap with this state

very simple to implement memory efficient, only two vectors must be stored in memory

Krylov method

nth Krylov space

an optimal linear combination of vectors approximating the extremal eigenstate exists, and the way to find it 
is to diagonalize  in the subspace generated by  vectors

(基本可认为能找到多个准确的低激发态)

start from  (only need it has non-vanishing overlap of the true ground state of )

our aim: write  in as a tridiagonal matrix on a set of basis 

number of Lanczos vectors needed: in the order of few tens to hundreds

energies often converge faster than other observables

drawback of Krylov method: loss of generality after long iterations (sometimes leading to fake eigenvalues)

straightforward solution: reorthogonalize Lanczos vectors relative to each other using a modified Gram-
Schmidt procedure (requires all vectors to be stored in memory, so that the advantage of memory 
efficiency lost)

or: start from the same initial state and re-calculate all vectors (after 10 to 100 Lanczos iterations, the 
resulting tridiagonal matrix is diagonalized and the extremal eigenstate is used as starting vector for 
a new Lanczos procedure) 

(implicitly Lanczos method)

Green function

inhomogeneous linear pde:

particular solution:

the Green's function is defined as the solution of a differiential equation:

SE in real space:

Green’s function is known as the propagator



Chap.2 Density Matrix Renormalization Group  

Traditional DMRG  

the key is to truncate the Hilbert space 

challenge: select a basis that will work in general

1975 NRG (数值重整化群)

1992 DMRG (密度矩阵重整化群)

1D particle-in-a-box

where  is:

离散化：

有限差分

numbering the partition points: . (tridiagonal)

e.g. :

NRG method

，  (the size of  needn't to be , we can consider "blockwise" 

tridiagonal matrix)

diagonalize , getting eigenvectors ，

build matrix  using low-energy eigenvectors (project to low-lying subspace)

change of basis, truncate

replace  and  by  and , truncate
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programming: recall np.argsort  for finding low-lying eigenvectors.

NRG fails: particle in a box eigenstates are 0 at the edges, any state formed by low-lying states has a kink 
in the middle to remove kink, need to keep almost all states

consider fixed-free combination

free,free ; free,fixed ; fixed,free ; fixed,fixed

use the lowest  states from each of , , , 

transforming matrix:

Tensor network

Roger Penrose's graphical notation



Reshape a tensor

Tensor contraction

connecting 2 index lines implies a contraction (summation over the same indices)

np.einsum

np.tensordot(A,B,(1,0))  (contract the 1st index of A and the 0th index of B)

some examples:

import numpy as np

C = np.random.rand(3,2,4)

C = np.reshape(C,[3,8])

np.shape(C)

>>> (3,8)



Schmidt decomposition

physical meaning: bipartate a quantum system in blocks  and , with orthogonal bases

bipartate the indices into  and 

apply SVD on  we have:

This procedure is called Schmidt's decomposition

 is left-isometric ( )，  is right-isometric 

 and  form orthogonal bases

graphical notation of the orthogonal condition (left-canonical and right-canonical)

reduce density matrix of a bipartate quantum system:

Schmidt decomposition

density matrix of the whole system: 

reduced density matrix: partial trace ( , where ) of 

Entanglement entropy:

【Example】tensor product state

(product state has no entanglement)

【Example】maximally entangled state



(for  dimensional bipartate system, its maximal entanglement entropy will be )
why can we truncate on rdm?

given  and an operator  acting on  part, the expectation value is 

graphically representation:

the reduced density matrix  tells us "which states are the most important" (truncate on )

use  and  to truncate the operator :

(equivalent to NRG !)

 

Infinite DMRG algorithm

form Hamiltonian matrix for the superblock

(system, site, site, environment)

diagonalize the superblock Hamiltonian to find the ground state 

form the rdm of (system+site) 

diagonalize  to find  and  and make a truncation to  and 

.

form the new system block using 

Sample code of traditional DMRG https://github.com/simple-dmrg/simple-dmrg

Finite DMRG algorithm

sweep back and forth until convergence is reached

https://github.com/simple-dmrg/simple-dmrg


 

MPS & MPO

Physical corner of Hilbert space

 , exponentially large Hilbert space

local Hamiltonian has only  params

ground state must live in a small physical corner of Hilb. space (can be described using less params using 
entanglement structure)

Recall many-body entanglement

Schmidt decomposition 

reduced density matrix 

EE .

maximum possible entanglement entropy:  ( )

Area Law

entropy of reduced states scales like the length of its boundary  

if  is the spins in the reduced states, we calculate its bipartite entanglement entropy:

gapped 1D system ground state: 

gapless 1D system ground state: 

physical explanation: the entanglement between two regions is located around the boundary

constructing MPS ansatz

our goal: construct an ansatz for quantum many-body systems which satisfies area law

suppose each site is composed of two virtual sites

virtual sites are placed in maximally entangled states , area law is automatically satisfied:

map virtual sites to physical sites by the operator :



(the coefficients  are to be determined, we called the DOF  virtual DOF, and  physical DOF)

Therefore, we can construct the total state as:

other perspective: 

each site is described using a -order tensor   (  parameters in total, compared to ), the total state 
is a contraction of these -order tensor.

Under this perspective, 

tensor network representation:

reduced density matrix: tracing out the green framed part:

we can see easily the maximum possible EE is , area law is satisfied.
expression of MPS ansatz:

two-site example:

1D-ring example:

Generalization: 2D PEPS (projected entangled-pair states)

FACT: given infinitely large bond dimensions, every state can be written as an MPS:

Proof:



In practice, we can have an appropriate state by choosing a finite bond dimension , e.g.,

and  is exact
canonical form of MPS

MPS is not unique (up to inserting an additional matrix and its inverse)

canonical form of MPS:

MPS that satisfies:

the gauge degree of freedoms are fixed to correspond with the Schmidt decomposition

left and right canonical condition:

can be found using SVD:



the SVD-based construction of canonical form: can be used to optimally truncate the bond-dimension of a 
quantum state

Textbook example: AKLT state (Affleck, Kennedy, Lieb, and Tasaki, PRL 1987)

AKLT: has a non-trivial constraint arising from the virtual-spin based AKLT construction 

AKLT state as MPS:

parent Hamiltonian  of AKLT state:

Can we construct  using MPS?

Recall: dimension of physical index: , virtual index: 

: a map from the  space to the  space

left inverse of :

local parent Hamiltonian:



verification:

Non-Hermitian Parent Hamiltonian (PRL 130, 220401 (2023))
States with exact matrix product form

GHZ state:

W state:

MPO (Matrix Product Operator)

open boundary condition

upper and down: physical bonds

left and right: virtual bonds

construct MPO of general Hamiltonian: SVD + contraction

construct MPO of simple Hamiltonian: graph method

regard  as a matrix:

MPO  matrix elements are physical operators

Example:

How to generalize these  terms? Write as "finite" state automata:

then we can read the component tensors directly from the graph.



varMPS  

Setting: given a Hamiltonian, we may find its ground state energy by minimizing its energy

E.G. 1D system with OBC:

the little square on the left: can be viewed as having a -dimensional index

If we use the canonical form of MPS:

: left-canonical; : right-canonical

Q: How to find canonical form using QR or LQ?

QR decomposition:

将张量 的 “矩阵化” 做QR分解

(pushing from left to right)

LQ decomposition:

将张量 的 “矩阵化” 做LQ分解

af://n623


(pushing from right to left)

for periodic boundary condition system: more complicated
Variational MPS algorithm (1-site OBC)

with open boundary condition and canonical form, we only need to optimize:

idea: we may fix all  and  and only optimize 

we optimal  can be found by solving the eigenvalue problem:

 has  open indices in all, we can reshape it into a -order tensor (a Hermitian matrix)

Similarly,  can be reshaped into a "vector" .

Minimizing   diagonalizing .

we optimize each site one by one, sweeping back and forth until convergence is reached.



Variational MPS algorithm (2-site OBC)

another option: optimize two sites at once:

the optimal  can be found, solving the eigenvalue problem: .

then we move on to the next two sites using SVD:

Variational MPS algorithm (1-site PBC)

because of PBC, , even if we use the canonical form of MPS

but we still use the canonical form for numerical stabilization

we need to solve: a generalized eigenvalue problem 



 corresponds to the ground state of  in the presence of 
Subroutine for tensor operations

NCon(Tensors, Indices)  rules:

all tensors have their own index order, labeled by  in black

all indices to be contracted are labeled by  in red

all indices to be left open are labeled by negative numbers  in red, they become the 
indices of the final tensor with index order  respectively

tensors are contracted one by one according to the contraction order 

more convenient than numpy.TensorDot  of numpy.einsum

choice of contraction order: avoiding successive contraction of virtual indices:

group tensor indices to form a new tensor: Group(A, shape A)

equivalence between traditional finite-size DMRG and variational MPS

in the traditional DMRG scheme, we grow blocks while decimating basis



recursion easily expressed as matrix multiplication:

truncation method: MPS vs DMRG

MPS

DMRG

iDMRG

iDMRG based on 2-site update MPS

iDMRG in the age of MPS (omit)



Infinite Time-Evolving Block Decimation method (iTEBD)  

imaginary-time evolution (ITE):

Hamiltonian includes odd terms and even terms (each term involves 2 sites)

Trotter-Suzuki decomposition

first order 

second order 

After Trotter, the evolution operator  becomes:

where

local update of an MPS
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（Tl, Gm, Tr are updated to new values while Gl and Gr remain the same）
calculate physical quantities: single- or two- body operator

several applications: 

Transfer operator and correlation length

vMPS for excited states

effective Hamiltonian , 

quasiparticle ansatz

optimal ground-state MPS by standard sweeping algorithm:

similar ansatz for excited states:

to ensure the orthogonality condition,  should live in the null space of , the  tensor 
satisfies the conditions:

excitation ansatz with OBC MPS

multi-target MPS (T.Xiang, arXiv:2305.15868)



2D DMRG

spin-liquid ground state of the  Kagome Heisenberg antiferromagent

fractional Chern insulators

time - dependent DMRG

tangent - space method

construct the tangent space on the MPS manifold (the space that contains low-energy dynamics)

real-time evolution elementary ex

Chap.3 Quantum Monte Carlo  

What is Monte Carlo:

a very broad calls of computational algorithms that rely on repeated random sampling to obtain numerical 
results.

essential idea: use randomness to solve problems that might be deterministic in principle.

Modern version of Monte Carlo:

first invented in the late 1940s by Stanislaw Ulam, while he was working on nuclear weapons projects at Los Alamos 
National laboratory. (central to the simulations required for the Manhattan Project)

(name from the Monte Carlo Casino in Monaco)

Tranditional Monte Carlo  

naive numerical integration using Monte Carlo:

Due to CLT (central limit theorem), the Monte Carlo error decreases with sample size , as:

Importance sampling:

concentrate the sampling on regions where  is large, using a statistical weight  (weight function) 
with:
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the sampling then becomes:

in order to keep the variance small, the distribution  should be similar to 
example of importance sampling:

choose a subset of microstates  with probability distribution:

then the average becomes:

the next question is how to generate random variable  with desired probability distribution ?
Acceptance-rejection sampling

suppose: we want to sample from  (which is difficult or impossible to sample from directly), but instead 
have a simpler distribution  from which sampling is easy.

a lot of rejections can take place before a useful sample is generated, thus making the algorithm inefficient 
and impractical

Markov chain

Markov process is a stochastic process (a sequence of random variables 

the probability of moving to the next state depends only on the present state and not on the previous states.

we use a Markov process repeatedly to generate a Markov chain of states

 

characterization of a Markov chain: 

initial probability distribution , and the transition probability 

equilibrium condition:

conditions to satisfy:

1. , therefore the equilibrium condition is simplify to:



2. ergodicity: it should be possible to reach any state from any other state, if we run it for long enough

3. detailed balance:

on average the system should go from x to y just as often as it goes from  to 
Metropolis-Hasting algorithm

two parts of transition probability:

 is selection probability: 

 is acceptance probability:  (acceptance ratio), if we start from x and our 
algorithm generates a new state  from it, we can accept or reject state  with 

for each 

randomly generate a candidate state  according to 

calculate the acceptance probability:

generate a  from 

if , accept the new state and set 

if , reject the new state and copy the old state forward .

we can easily verify that the choice of  and  ensures the detailed balance condition

Example: Monte-Carlo simulation of classical Ising model

choose an initial configuration for the spins

we propose a move by randomly choosing a spin and flip it

acceptation

, flip the -th spin

evaluate:

then we generate a uniform random number 

, accept the move, 

, reject the move,  remains the same

iteration: use new configuration as the new starting point and go back to the trial step

equilibration: we discard the first steps of the random walk, when the distribution of the sampled Markov 
chain has not yet reached its limit 

data blocking

Quantum Monte Carlo - world line QMC  

 thermal expectation value

where  and possibly 

,  (time slicing of the partition function)

choose a basis and insert complete sets of states:

use approximation for imaginary time evolution operator

leads to error  
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we can compute the weights for the different time periodic paths

these paths are importance sampled according to their weight

After detailed equilibrium is reached, the expectation value of the operator  is:

write this in a form suitable for MC importance sampling:

 — weight,  — estimator

Quantum Monte Carlo - stochastic series expansion (SSE)  

Taylor expansion of the Boltzmann operator:

choosing a basis, the partition function can be written as:

for any model, the energy is:

fixed length scheme: cut-off at , fill in with unit operators :

here,  is the number of  instances in the sequence 

frustrated systems have sign problems

updating process

Chap.4 Tensor Network State  

Outline: Projected Entangled-Pair States (PEPS, with application in topological order), 2D tensor network algorithms, 
Multi-scale Entanglement Renormalization Ansatz (多尺度纠缠重整化，MERA), etc.

PEPS  

representation of some simple states:
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product state

"project out virtual freedoms, reconstruct physical freedoms":

product state needs only  virtual freedoms and  physical freedoms

GHZ state 

product state needs  virtual freedoms

RVB state (resonated valence bond state)

virtual freedoms: 

Kitaev's toric code: the simplest and most well studied spin model with topological order

ground states are equal weight superposition of ALL CLOSED LOOPS

PEPS representation?



physical freedoms: ，virtual freedoms:  (red or black)

non-trivial elements: satisfying 

Another representation:

2D Tensor Network  

exact contraction of PEPS is a #P hard problem

approximation methods to contract 2D tensor networks:
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